
1

Presented by Rizos Sakellariou but thanks to
students and collaborators:

Ilia Pietri, Henan Zhao, Ewa Deelman and
more

Largely based on a paper to appear at the 3rd

Workshop on Power-Aware Algorithms, Systems
and Architectures (in conjunction with ICPP 2014)

Scheduling Workflows
with Energy Constraints

2

Scheduling does matter!

Schedule: “A plan for performing work or
achieving an objective, specifying the order and
allotted time for each part”
(http://www.thefreedictionary.com)

According to one view, Computer Science is the
art of realising successive layers of abstraction

Scheduling: the constituent parts:
• Work
• Resources
• Objective(s)

3

In this work…

• Work
– Scientific workflows

• DAG (nodes: work, edges: communication)

• Resources
– Cloud resources

• Objective
– Complete execution of the workflow by a

certain deadline on a number of resources

– Minimize overall energy consumption

4

Scientific Workflows

Many interesting scientific applications can be represented by DAGs

I. Taylor, E. Deelman,
D. Gannon: Workflows
for e-Science. Springer,

2007

5

The Montage Workflow

• Montage example: Generating science-grade mosaics
of the sky (Bruce Berriman, Caltech)

• http://montage.ipac.caltech.edu/

BgModel

Project

Project

Project

Diff

Diff

Fitplane

Fitplane

Background

Background

Background

Add

Image1

Image2

Image3

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator

6

M0 M1 M2

0

20

40

60

80

100

120

140

0

14

5

7

2

3

6

9

8

A DAG, a schedule, and an old idea

0

6

54321

87

9

7

Characterize the Schedule

• Spare time indicates the maximum time that a node,
i, may delay without affecting the start time of an
immediate successor, j.
– A node i with an immediate successor j on the DAG:

spare(i,j) = Start_Time(j) – Data_Arrival_Time(i,j)
– A node i with an immediate successor j on the same

machine: spare(i,j) = Start_Time(j) – Finish_Time(i)
– The minimum of the above for all successors of task i is

the: Spare time of task i.

R.Sakellariou, H.Zhao. A low-cost rescheduling policy for efficient
mapping of workflows on grid systems. Scientific Programming, 12(4),
December 2004, pp. 253-262.

8

Example

DAT(4,7)=40.5, ST(7)=45.5; hence, spare(4,7) = 5
FT(3)=28, ST(5)=29.5; hence, spare(3,5) = 1.5

DAT: Data_Arrival_Time, ST: Start_Time, FT: Finish_Time

9

Characterize the schedule (cont.)

• Slack indicates the maximum time that a node, i,
may delay without affecting the overall
makespan.
– Slack(i)=min(slack(j)+spare(i,j)), for all successor

nodes j (both on the DAG and the machine)

10

The idea

�Given a schedule (mapping of tasks onto
machines)
�Given that (according to the schedule) many

tasks will always have some slack
• Why don’t we try to lower the frequency of

the tasks with a slack so that they run up to
the slack (or they use as much as possible)?
– This should not affect overall makespan

What is the catch here?

11

Lowering frequency does not
mean we save energy!

• Running at a lower frequency will require
less power, but it will take longer!

• Remember: energy is power × time

12

Thanks to Thomas Rauber (1st day)

13

In addition…

• The workflow (DAG) is a collection of
tasks

• We need to take into account the energy vs
frequency behaviour of each task and
overall (for the whole workflow)

• Different tasks will exhibit different
behaviour

• If we try to apply frequency scaling for one
task we have to pay some cost for switching
frequency (small, but…)

14

The idea

• Assuming that we need to meet a deadline and
minimize energy:
– 1. Start with a schedule running at highest frequency

(can be easily obtained with HEFT, etc)
– 2. Identify the most profitable in terms of energy

reduction tasks (beyond some threshold)
– 3. Lower to the next available frequency
– 4. Assess the impact to the whole workflow (DAG)
– 5. Go to 2 as long as there is overall energy reduction
– 6. Cleanup and finish.

(Energy-aware stepwise frequency scaling – ESFS)

15

The intuition

• Reduce frequency by one step: (i) trying to
make sure that what may be the local
optimum for every task (in the U-curve) is not
exceeded, and (ii) assessing the overall
energy consumption for the workflow.

16

The models

• Power:

Pf = Pbase+ Pdif (f – fbase)
3 / fbase

(Pierson & Casanova, Euro-Par 2011)

• Task execution time:

Runtime = (1 + β (fmax / f – 1)) runtimefmax

(Etinski, Corbalan, Labarta, Valero, JPDC 2012)

17

EvaluationEvaluation

• Synthetic data of 3 real

workflows, 100 tasks each

– LIGO

– SIPHT

– Montage

• Baseline algorithms
– EES[1]

– HEFT

• Processor characteristics
• Pbase=152W

• Pdif=15.39W

• Pidle=60%Pfmax

• Threshold: 0.01%

fmode 0 1 2 3 4

Slow 1800 2000 2200 2400

Fast 1800 2000 2200 2400 2600

[2] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, and X. Huang, “Enhanced energy-efficient scheduling for

parallel applications in cloud,” in Proceedings of the 12th IEEE/ACM CCGrid. IEEE, 2012, pp. 781–786.

18

Results/Comments

• Simulation results assessing ESFS (and comparing
with EES and HEFT) to be presented at PASA@ICPP
in September.

• Comments/Criticism:
– Simulation is not the real thing

– Processor power is not where most of the power goes

– Power when idle may be much less than 60% of power_max

– Power consumption may not be constant for some
frequency

19

Conclusion

• Energy-aware scheduling requires a good
understanding of underlying energy-related
aspects (or parameters), but there is lots of scope
for interesting, scheduling-related problems.

• To appear at PASA@ ICPP

• (and a formula/problem): for a givenn what is the
smallest k so that there is an integer solution of:

x1
n +x2

n +x3
n +…+xk

n = zn

www.sucreproject.eu

