Overcoming Data-Locality: an In-
Memory Runtime File System with
Symmetrical Data Distribution

Alexandru Uta, Andreea Sandu, Thilo Kielmann
a.uta@vu.nl, a.sandu@vu.nl, Thilo.Kielmann@vu.n|

mailto:a.uta@vu.nl
mailto:a.sandu@vu.nl
mailto:Thilo.Kielmann@vu.nl?subject=

‘Data Locality
Considered Harmtul”

This work has just been reviewed by IEEE Cluster 2014
e 2Xx “Nomination for best paper award”
e 2X "Reject”

2

Many-Task Computing

application processes that j
communicate through an e /&
underlying (distributed/shared)]
file system |
examples: workflows,
parameter sweeps,
parallel scripts
individual tasks typically runin -~ =
between 0.1 and 10 s

write-once, read-many

access pattern

o |

| . 1 ! Data Aggregation

Data Aggregation

Pipeline

mProjectPP mDifTFit mConcatFit mBgModc] mBackground

mimgTbl mAdd mShrink mJPEG

Cluster File System Setup

PARALLEL FILE SYSTEM COMPUTE RESOURCES
NETWORK

A
Qiege

Pertormance limited by:
* network speed/latency
e disk/SSD speed/latency

4

In-memory Scratch File Systems

MTC performance depends on file |/O COMPUTE RESOURCES

There is plenty of RAM in the compute

nodes
There is plenty of network in between

Why not store the intermediate files In

a memory FS?

* No persistence needed here...

e Co-locate compute and storage
facilities (on all compute nodes)

5

State-of-the-art: AMFS 11

* In-memory distributed file system for COMPUTE RESOURCES
MTC
e Optimizes for data-locality:
* write into local memory
* schedule tasks where data resides
* copy remote file(s) before execution
* |f no local data available
* |f Input files from more than one
node needed

[1] Zhao Zhang, Daniel S Katz, Timothy G Armstrong, Justin M
Wozniak, and lan Foster. Parallelizing the execution of sequential
scripts. SC13 6

Example Worktlow: Montage

Data Is created at one or few
nodes

Results are accumulated at
one node

Data aggregation and
partitioning in between
Tasks often read more than
one input file

mProjectPP

mimgTbl

mDiTF1t

mAdd

mCon

mSh

'Y

Data Aggregation

Data Partitioning

Data Aggregation

rink

catFit

mBgModc]

mJPEG

Pipcline

Write into local memory:
e severe data imbalance
Read from local memory:
e copy if needed

Schedule tasks where data resides

« only few nodes have data in the beginning
Otherwise, copy remote files before execution

e create lots of copies of the data

e for data aggregation, all data needs to
be merged onto the aggregating node

e another imbalance

Potential problems:
e slowdown because of data copies

e failing execution when memory gets

exhausted

8

mProjectPP

mimgTbl

mDiTFut

mAdd

Data Locality-based Scheduling

J
|

Data Aggregation

Data Partitioning

Data Aggregation

mConcatFit

mShrink

mBgModcl

mJPEG

Pipeline

mBackground

Overcoming Data Locality

« Remember: the network is fast (QDR IB: 32Gb/s)
e |dea:
* gplit files in equal-sized stripes (e.g., 512 KB)
* store stripes equally distributed across all nodes,
based on a hashing function
* remotely read only stripes that are needed (cache
them)

e Semantics: write once / read multiple times
e that is what MTC/workflows do

MemFS

* Run memcached key-value store on all nodes
* Run FUSE file system and libomemcached to access the
memcached servers

e Lots of system optimisation (not shown in this talk)
* multi-threaded writing and reading
* buffering and prefetching (for sequential r/w)

10

MemFES

Node 1 Node 2
Application Application

FUSE FUSE

Libmemcached Libmemcached

: sewng Vlemcached Memcached
set(file1.txt_stripe3)

Node i Node k

Application cp file1.txt dfs/ Application
H(file1.txt_stripe1..3)=node k, j, 1 FUSE

Libmemcached Libmemcached

Node |
Application
FUSE

Node j+1
Application
FUSE

Libmemcached

Libmemcached

Memcached Memcached

set(file1.txt_stripe2)

Evaluation

* All experiments run on DAS4 (www.cs.vu.nl/das4/)
e /2 nodes
e dual-quad-core Intel E5620 2.4 GHz
¢ 24 GB memory
* QDR Infiniband (32Gb/s)
 1GB Ethernet

e Tests use Infiniband (IPolB ~ 1.1 GB/s)

* Micro benchmarks: MTC Envelope using [OZone
* Applications:

* Montage astronomical image mosaic

* BLAST gene sequence alignment

12

http://www.cs.vu.nl/das4/

MTC Envelope (2

e set of metrics that assess a system's capability to run
MTC applications:
e 1-1 write bandwidth / throughput
* 1-1 read bandwidth / throughput
* N-1 read bandwidth / throughput
 metadata throughput: open, create

2] Zhang, Z., Katz, D. S., Wilde, M., Wozniak, J. M., & Foster, |.
MTC Envelope: Defining the capability of large scale computers in
the context of parallel scripting applications. HPDC 13

13

MTC Envelope Bandwidth

35000

B 15000

Bandwidth (MB/s)

10000

File Size 1MB
B— AMFS Write
e L read
Yo AMPS 11 Read
®—— MemFS N-1 Read :
¢ AVPS R Read p
— 3
/__- e
g .

i

8 16 24 32 40 48 56 64

Number of Nodes
14

Throughput (op/s)

MTC Envelope Metadata

Metadata Scalability
250000

L MemFS Create
I AMFS Create
¢ MemFS Open P
200000 — & — AMFS Open g
150000
100000 A
g _—
50000 . ,,
— B
0

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Number of Nodes

Montage Worktlow

e Astronomical image mosaic
engine

e Our use cases:
* 6X6 (5,9 GB input),
e 12x12 (20 GB input)
degree Montage instance

* \We assessed performance,
memory usage and vertical/

horizontal scalability

mimgTbl

16

Montage 6 Results

Montage 6 Vertical Scalability on 64 Nodes

m mBackground
m mDiffFit

I mProjectPP

S S S S S S S S

Number of Cores

Montage 6 Results

Montage 6 Horizontal Scalability
700

B mBackground
600 B mDiffFit
200 mProjectPP
400
0300
£
i:200
oo N B
0 = -
o) th‘E) o) D‘Q‘b &Q‘b o) &Q‘E)
Q‘E’/Qg/\(\ QQ’/Q%/((\ Q O o @
> \6 Q)b‘

Number of Nodes

Montage 6 Results

AMFS MEMORY DISTRIBUTION FOR MONTAGE 6

Number of Nodes | Scheduler Node | Other Nodes
8 19 GB 9.5 GB

16 17 GB 5.5 GB

32 16 GB 3 GB

64 16 GB 1.8 GB

« AMFS does not scale up to 8 cores per node
because In the 64 node case, there is less

data-locality

e the scheduler node becomes a centralizead

bottleneck

19

Memory Usage (GB)

120

100

80

60

40

20

Montage 6 Results

1

I

Aggregate Memory Usage

1

1

e’?)p ij e’?}p o’?}p
8 Nodes 16 Nodes 32 Nodes 64 Nodes

Montage12 Results

MemFS Montage 12 Horizontal Scalability

400 mBackground
350 m mDiffFit
® mProjectPP
300
250
0
5 200
=
= 150
100
50
0
128 256 512

Number of Cores

AMFS cannot run this use case:
the data does not fit into the scheduler node

BLAST Workflow

bioinformatics app

Data Partitioning

. database

fastasplit

searches for gene
seguences in a

<—— Data Partitioning .frag 1N

formatdb
v
database McorN
query 1.M
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, . @ vlastal
. ; %——— Data Aggregation db 1..N
|npUt nt database T S—— - J— ¥ 99 .:::;yehM
(57 GB input) —
assessed
performance,
horizontal/vertical
scalabillity

22

BLAST Results

BLAST nt Vertical Scalability on 64 Nodes

1400
M blastall formatdb
1200
1000
800
v 600
e
= 400
.
0
&° &° &°
?‘\‘\ &“e ?}‘\ ‘g\e \‘\ ‘4\
> Vi A%°

Number of Cores

BLAST Results

BLAST nt Horizontal Scalability

3500

M blastall formatdb

3000

2500

2000

£ .1500
()

£ 1000
=

500

© &°

N

Number of Cores

Conclusions

e |tis better to equally distribute large data
o Better utilisation of memory capacity
* Can run larger problems
» Better balancing helps speeding up

« MemFS implements a distributed hash table
overlay using memcached/libomemcached

« MemFS scales welly, both horizontally and vertically

25

Future Research Directions

* decreasing CPU load for better vertical scalability:
using native RDMA, or kernel tile system

» supporting malleability/elasticity
* e.g., scaling out when memory exceeded

» develop scheduler that exploits malleabillity to:

save COoSt

increase/decrease aggregate throughput
increase/decrease system capacity
save power

26

