
Overcoming Data-Locality: an In-
Memory Runtime File System with

Symmetrical Data Distribution

Alexandru Uta, Andreea Sandu, Thilo Kielmann
a.uta@vu.nl, a.sandu@vu.nl, Thilo.Kielmann@vu.nl

1

mailto:a.uta@vu.nl
mailto:a.sandu@vu.nl
mailto:Thilo.Kielmann@vu.nl?subject=

“Data Locality
Considered Harmful”

2

This work has just been reviewed by IEEE Cluster 2014:
• 2x “Nomination for best paper award”
• 2x “Reject”

Many-Task Computing
• application processes that

communicate through an
underlying (distributed/shared)
file system

• examples: workflows,
parameter sweeps, 
parallel scripts

• individual tasks typically run in
between 0.1 and 10 s

• write-once, read-many 
access pattern

3

Cluster File System Setup

Performance limited by:
• network speed/latency
• disk/SSD speed/latency

4

In-memory Scratch File Systems

• MTC performance depends on file I/O  

• There is plenty of RAM in the compute
nodes

• There is plenty of network in between  

• Why not store the intermediate files in
a memory FS?
• No persistence needed here…
• Co-locate compute and storage

facilities (on all compute nodes)

5

State-of-the-art: AMFS [1]
• In-memory distributed file system for

MTC
• Optimizes for data-locality:

• write into local memory
• schedule tasks where data resides
• copy remote file(s) before execution

• if no local data available
• if input files from more than one

node needed
!
!
!
!
[1] Zhao Zhang, Daniel S Katz, Timothy G Armstrong, Justin M
Wozniak, and Ian Foster. Parallelizing the execution of sequential
scripts. SC13 6

Example Workflow: Montage

• Data is created at one or few
nodes

• Results are accumulated at
one node

• Data aggregation and
partitioning in between

• Tasks often read more than
one input file

7

Data Locality-based Scheduling
• Write into local memory:

• severe data imbalance
• Read from local memory:

• copy if needed 

• Schedule tasks where data resides
• only few nodes have data in the beginning

• Otherwise, copy remote files before execution
• create lots of copies of the data
• for data aggregation, all data needs to 

be merged onto the aggregating node
• another imbalance 

• Potential problems:
• slowdown because of data copies
• failing execution when memory gets

exhausted
8

Overcoming Data Locality
• Remember: the network is fast (QDR IB: 32Gb/s)
• Idea:

• split files in equal-sized stripes (e.g., 512 KB)
• store stripes equally distributed across all nodes,

based on a hashing function
• remotely read only stripes that are needed (cache

them) 

• Semantics: write once / read multiple times
• that is what MTC/workflows do

9

MemFS
• Run memcached key-value store on all nodes
• Run FUSE file system and libmemcached to access the

memcached servers 

• Lots of system optimisation (not shown in this talk)
• multi-threaded writing and reading
• buffering and prefetching (for sequential r/w)
• …

10

MemFS

11

Evaluation
• All experiments run on DAS4 (www.cs.vu.nl/das4/)

• 72 nodes
• dual-quad-core Intel E5620 2.4 GHz
• 24 GB memory
• QDR Infiniband (32Gb/s)
• 1GB Ethernet  

• Tests use Infiniband (IPoIB ~ 1.1 GB/s)
!
• Micro benchmarks: MTC Envelope using IOZone
• Applications:

• Montage astronomical image mosaic
• BLAST gene sequence alignment

12

http://www.cs.vu.nl/das4/

MTC Envelope [2]
• set of metrics that assess a system's capability to run

MTC applications:
• 1-1 write bandwidth / throughput
• 1-1 read bandwidth / throughput
• N-1 read bandwidth / throughput
• metadata throughput: open, create

!
!
!
!
!
[2] Zhang, Z., Katz, D. S., Wilde, M., Wozniak, J. M., & Foster, I.
MTC Envelope: Defining the capability of large scale computers in
the context of parallel scripting applications. HPDC 13

13

MTC Envelope Bandwidth

14

MTC Envelope Metadata

15

Montage Workflow

16

• Astronomical image mosaic
engine 

• Our use cases:
• 6x6 (5,9 GB input),
• 12x12 (20 GB input)

degree Montage instance  

• We assessed performance,
memory usage and vertical/
horizontal scalability

Montage 6 Results

17

Montage 6 Results

18

Montage 6 Results

19

• AMFS does not scale up to 8 cores per node
because in the 64 node case, there is less
data-locality

• the scheduler node becomes a centralized
bottleneck

Montage 6 Results

20

Montage12 Results

21

AMFS cannot run this use case;
the data does not fit into the scheduler node

BLAST Workflow

22

• bioinformatics app  

• searches for gene
sequences in a
database 

• input nt database
(57 GB input) 

• assessed
performance,
horizontal/vertical
scalability

BLAST Results

23

BLAST Results

24

Conclusions

25

• It is better to equally distribute large data
• Better utilisation of memory capacity
• Can run larger problems
• Better balancing helps speeding up

!
• MemFS implements a distributed hash table

overlay using memcached/libmemcached
!
• MemFS scales welly, both horizontally and vertically

Future Research Directions

26

• decreasing CPU load for better vertical scalability:
using native RDMA, or kernel file system

!
• supporting malleability/elasticity

• e.g., scaling out when memory exceeded
!
• develop scheduler that exploits malleability to:

• save cost
• increase/decrease aggregate throughput
• increase/decrease system capacity
• save power

