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This work has just been reviewed by IEEE Cluster 2014
e 2Xx “Nomination for best paper award”
e 2X "Reject”
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Many-Task Computing

application processes that j
communicate through an e /&
underlying (distributed/shared) ]
file system |
examples: workflows,
parameter sweeps,
parallel scripts
individual tasks typically runin -~ =
between 0.1 and 10 s

write-once, read-many

access pattern
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Cluster File System Setup

PARALLEL FILE SYSTEM COMPUTE RESOURCES
NETWORK

A
Qiege

Pertormance limited by:
* network speed/latency
e disk/SSD speed/latency
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In-memory Scratch File Systems

MTC performance depends on file |/O COMPUTE RESOURCES

There is plenty of RAM in the compute

nodes
There is plenty of network in between

Why not store the intermediate files In

a memory FS?

* No persistence needed here...

e Co-locate compute and storage
facilities (on all compute nodes)
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State-of-the-art: AMFS 11

* In-memory distributed file system for COMPUTE RESOURCES
MTC
e Optimizes for data-locality:
* write into local memory
* schedule tasks where data resides
* copy remote file(s) before execution
* |f no local data available
* |f Input files from more than one
node needed

[1] Zhao Zhang, Daniel S Katz, Timothy G Armstrong, Justin M
Wozniak, and lan Foster. Parallelizing the execution of sequential
scripts. SC13 6



Example Worktlow: Montage

Data Is created at one or few
nodes

Results are accumulated at
one node

Data aggregation and
partitioning in between
Tasks often read more than
one input file
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Write into local memory:
e severe data imbalance
Read from local memory:
e copy if needed

Schedule tasks where data resides

« only few nodes have data in the beginning
Otherwise, copy remote files before execution

e create lots of copies of the data

e for data aggregation, all data needs to
be merged onto the aggregating node

e another imbalance

Potential problems:
e slowdown because of data copies

e failing execution when memory gets

exhausted
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Overcoming Data Locality

« Remember: the network is fast (QDR IB: 32Gb/s)
e |dea:
* gplit files in equal-sized stripes (e.g., 512 KB)
* store stripes equally distributed across all nodes,
based on a hashing function
* remotely read only stripes that are needed (cache
them)

e Semantics: write once / read multiple times
e that is what MTC/workflows do



MemFS

* Run memcached key-value store on all nodes
* Run FUSE file system and libomemcached to access the
memcached servers

e Lots of system optimisation (not shown in this talk)
* multi-threaded writing and reading
* buffering and prefetching (for sequential r/w)
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MemFES

Node 1 Node 2
Application Application

FUSE FUSE

Libmemcached Libmemcached

: sewng Vlemcached Memcached
set(file1.txt_stripe3)

Node i Node k

Application cp file1.txt dfs/ Application
H(file1.txt_stripe1..3)=node k, j, 1 FUSE

Libmemcached Libmemcached

Node |
Application
FUSE

Node j+1
Application
FUSE

Libmemcached

Libmemcached
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Evaluation

* All experiments run on DAS4 (www.cs.vu.nl/das4/)
e /2 nodes
e dual-quad-core Intel E5620 2.4 GHz
¢ 24 GB memory
* QDR Infiniband (32Gb/s)
 1GB Ethernet

e Tests use Infiniband (IPolB ~ 1.1 GB/s)

* Micro benchmarks: MTC Envelope using [OZone
* Applications:

* Montage astronomical image mosaic

* BLAST gene sequence alignment
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http://www.cs.vu.nl/das4/

MTC Envelope (2

e set of metrics that assess a system's capability to run
MTC applications:
e 1-1 write bandwidth / throughput
* 1-1 read bandwidth / throughput
* N-1 read bandwidth / throughput
 metadata throughput: open, create

2] Zhang, Z., Katz, D. S., Wilde, M., Wozniak, J. M., & Foster, |.
MTC Envelope: Defining the capability of large scale computers in
the context of parallel scripting applications. HPDC 13

13



MTC Envelope Bandwidth
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Throughput (op/s)

MTC Envelope Metadata

Metadata Scalability
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Montage Worktlow

e Astronomical image mosaic
engine

e Our use cases:
* 6X6 (5,9 GB input),
e 12x12 (20 GB input)
degree Montage instance

* \We assessed performance,
memory usage and vertical/

horizontal scalability

mimgTbl
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Montage 6 Results

Montage 6 Vertical Scalability on 64 Nodes
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Montage 6 Results

Montage 6 Horizontal Scalability
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Montage 6 Results

AMFS MEMORY DISTRIBUTION FOR MONTAGE 6

Number of Nodes | Scheduler Node | Other Nodes
8 19 GB 9.5 GB

16 17 GB 5.5 GB

32 16 GB 3 GB

64 16 GB 1.8 GB

« AMFS does not scale up to 8 cores per node
because In the 64 node case, there is less

data-locality

e the scheduler node becomes a centralizead

bottleneck
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Memory Usage (GB)
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Montage12 Results

MemFS Montage 12 Horizontal Scalability
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AMFS cannot run this use case:
the data does not fit into the scheduler node



BLAST Workflow

bioinformatics app

Data Partitioning

. database
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BLAST Results

BLAST nt Vertical Scalability on 64 Nodes
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BLAST Results

BLAST nt Horizontal Scalability
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Conclusions

e |tis better to equally distribute large data
o Better utilisation of memory capacity
* Can run larger problems
» Better balancing helps speeding up

« MemFS implements a distributed hash table
overlay using memcached/libomemcached

« MemFS scales welly, both horizontally and vertically
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Future Research Directions

* decreasing CPU load for better vertical scalability:
using native RDMA, or kernel tile system

» supporting malleability/elasticity
* e.g., scaling out when memory exceeded

» develop scheduler that exploits malleabillity to:

save COoSt

increase/decrease aggregate throughput
increase/decrease system capacity
save power
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