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Distributed Optimization

Distributed Optimization

Consider a function F : {0,A}N → R, to be optimized in a distributed way.
N is the number of dimensions (agents)
{0,A} is the action space of each agent (w.n.l.g.).

State x = (x1, x2, . . . , xN) is a global optimum if F (x) = max
y∈{0,A}N

F (y).

x is a local optimum if ∀i , F (x) = max
α∈{0,A}

F (α, x−i ).

Assumption (A)

We assume that for all i and for all x ,

argmax
α∈{0,A}

F (α, x−i ) is unique.
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Distributed Optimization

Example in dimension N = 2
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Greedy Algorithm

Asynchronous Greedy Algorithm (AGA)

Asynchronous Greedy Algorithm (AGA)
1 Pick one agent i (with a given distribution over all agents)
2 Agent i chooses the action that maximizes F
3 Go back to 1.
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Greedy Algorithm

Example in dimension 2 (with 2 agents)
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Greedy Algorithm

Convergence to Local Optima

Theorem
Algorithm AGA converges in finite time a.s. to a local optimum of F .

Proof. Each time one coordinate is changed, the value increases (so it
must converge to a local optimum).
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Greedy Algorithm

General Greedy Algorithm

AGA is distributed (each agent acts independently of the others) but
requires a time coordination between them. At each step a single agent
must be selected. In distributed systems this requires an election
mechanism, that may be costly.

An alternative is to let several agents act simultaneously.
Let R be a family of revision sets (sets of agents that can act
simultaneously).

Greedy Algorithm (GA)
1 Pick one revision set S (with a given distribution).
2 Each agent in S chooses the action that maximizes F .
3 Go back to 1.

Bruno Gaujal (Inria) Scheduling in distributed optimization Lyon 8 / 20



Greedy Algorithm

General Greedy Algorithm

AGA is distributed (each agent acts independently of the others) but
requires a time coordination between them. At each step a single agent
must be selected. In distributed systems this requires an election
mechanism, that may be costly.
An alternative is to let several agents act simultaneously.
Let R be a family of revision sets (sets of agents that can act
simultaneously).

Greedy Algorithm (GA)
1 Pick one revision set S (with a given distribution).
2 Each agent in S chooses the action that maximizes F .
3 Go back to 1.

Bruno Gaujal (Inria) Scheduling in distributed optimization Lyon 8 / 20



Greedy Algorithm

Example (continued)

Revision sets: {1, 2} (both agents always play together).
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Separability

Separable Families

Let R be a family of sets and consider the following elimination process:

As long as there is a singleton (say {k}) in R, remove k from all sets in R.

R is separable if the elimination process reduces R to the empty set.

Example:
R1 = {1}, {1, 2, 3}, {2, 4}, {1, 4} is separable
but
R2 = {1}, {1, 2, 3}, {2, 4}, {3, 4} is not separable

R3 = all the sets obtained when each agent i decides to play with
probability pi is separable (and fully distributed).
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Separability

Separability and Convergence to Local Optima

Theorem
The algorithm GA converges to a local optimum for all functions F
satisfying (A) if and only if the revision set is separable.

Proof.
1) By contradiction.
If R is separable, and GA does not converge to a local optimum, let x be
the state with maximal value visited by GA.

From x , let us select agents in the order of the elimination for separability
(this happens with a positive probability).
The value increases (impossible) or x is a local optimum (impossible).

Bruno Gaujal (Inria) Scheduling in distributed optimization Lyon 11 / 20



Separability

Separability and Convergence to Local Optima

Theorem
The algorithm GA converges to a local optimum for all functions F
satisfying (A) if and only if the revision set is separable.

Proof.
1) By contradiction.
If R is separable, and GA does not converge to a local optimum, let x be
the state with maximal value visited by GA.
From x , let us select agents in the order of the elimination for separability
(this happens with a positive probability).

The value increases (impossible) or x is a local optimum (impossible).

Bruno Gaujal (Inria) Scheduling in distributed optimization Lyon 11 / 20



Separability

Separability and Convergence to Local Optima

Theorem
The algorithm GA converges to a local optimum for all functions F
satisfying (A) if and only if the revision set is separable.

Proof.
1) By contradiction.
If R is separable, and GA does not converge to a local optimum, let x be
the state with maximal value visited by GA.
From x , let us select agents in the order of the elimination for separability
(this happens with a positive probability).
The value increases (impossible) or x is a local optimum (impossible).

Bruno Gaujal (Inria) Scheduling in distributed optimization Lyon 11 / 20



Separability

Proof (continued)

2) By construction.
Assume GA always converges to a local optimum under R.

Actions of each agent: {0, . . . ,A} where p = A+ 1 is a prime number > N.
We want to minimize F (x) =

∑
i

xi mod p.

Its optimal value is 0.
Assume agent i is selected at the next round (maybe with many others) at
state x with value k = F (x).
Its best action is (xi − k) mod p.
If m players play simultaneously, the new state has value (1−m)k mod p.
Since p is prime, we can only reach F = 0 when m = 1: R must contain a
singleton.
The rest holds by induction on N.
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Randomized Algorithm

Randomized Algorithm

The problem with the Greedy Algorithm is that convergence to local
optima may not be good enough.

To give a chance to agents to exit from a local optimum, we randomize
their choices. The choice Qi (x) of agent i under state x is:

P(Qi (x) = a) =
eθF (a,x−i )∑
b e

θF (b,x−i )

Randomized Algorithm (RA)
1 Pick one revision set S (with a given distribution ρ).
2 Each agent i in S chooses action Qi (x)

3 Go back to 1.
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Randomized Algorithm

Randomized Algorithm (II)

The evolution of the state x is Markovian. The transition matrix has two
parts: first choose the revision set S , then choose the new action for each
agent in S .

The (irreducible) transition matrix P is

Px ,y =
∑

S⊇Diff(x ,y)
ρ(S)

∏
i∈S

eθF (yi ,x−i )∑
α∈A eθF (α,x−i )

.

Let π(θ) be the (unique) stationary measure of P .
A state x is stochastically stable if lim

θ→∞
πx(θ) > 0

When θ →∞, (RA) → (GA),
however πx(θ) 6→ πx(∞), (the stable states of (GA)), but selects a subset.
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Randomized Algorithm

Convergence to Local Optima for (RA)

Theorem (Convergence to local optimal)

If the revision set R is separable, then the stochastically stable states are
local optima.

proof. Use the explicit form of the stationary distribution and compute
equivalents w.r.t. θ.
Tree Theorem: Let Tx be the set of spanning in-trees of the transition
graph, with root in x . The stationary distribution π is proportional to the
sum of the probability weights of all the spanning trees T in Tx :

πx ∝
∑
T∈Tx

∏
(y ,z)∈T

Py ,z .
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Randomized Algorithm

Convergence to Global Optima

Theorem (Convergence to global optima for asynchronous revisions)

If the revision family is only made of all the singletons, then the only
stochastically stable states are the global optima.

Theorem (Convergence to global optimal for two players)
If the revision family is {1}, {2}, {1, 2}, then the only stochastically stable
states are the global optima.
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Examples

Example 1: 2 agents, no convergence

F =

1\2 a b

a 1 0.5
b 0 1

Revision set: {1, 2}

π(((a, a), (a, b), (b, a), (b, b))→ (1/4, 1/4, 1/4, 1/4).
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Examples

Example 2: 3 agents, convergence to LO

(2)

(1)

0

0

0

9

0
0

0

(−12)

(−11) (−1)

(−10)

(0)(3)

Revision set: {1}, {2}, {3}, {1, 2, 3}.

Unique stable state: (1, 1, 1) (not global optimum).
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Examples

Examples 3: 2 agents, convergence to LO

F =

1\2 a b c

a 11 0 5
b 5 10 8

Separable revision set: {2}, {1, 2}.

Unique stable state: (b, b), not global optimum.
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Examples

Example 4: 2 agents, no convergence

F =

1\2 a b

a 1 1
b 1 0

Revision set {1, }, {2}, {1, 2}.

π((a, a), (a, b), (b, a), (b, b))→ (36/79, 20/79, 20/79, 3/79)
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