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Introduction: parallelism and resource management

Parallel everywhere

Informally, parallelism is the simultaneous use of multiple
computing devices (whatever they are).
Today. (Example of molecular dynamics):

The codes are multi-scale (classical dynamic and quantum
chemistry).

Several hundreds of thousands atoms.

Sophisticated visualization modules.

In Situ simulations (adaptive).
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Introduction: parallelism and resource management

HPC (High Performance Computing)

TOP500: an international organization created in 1993.
Website updated twice a year.

Main goal: to rank the most powerful computing platforms.
Historical data, stats, evolution tendencies (energy, accelerators),
...
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Introduction: parallelism and resource management

Petit intermède culturel...

Performance scale: 103

Mega

Giga (Giant)

Tera (monster)

Peta

Exa

...
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Introduction: parallelism and resource management

Evolution of computing: The TOP’500

http://www.top500.org/statistics/perfdevel/
maximum performance (in PetaFlops) and efficiency (average on
peak)

Tianhe-2 Milky Way-2 (China) – 33.86

Titan (Cray - USA) – 17.59

Sequoia (IBM - USA) – 17.17

K-computer (Fujitsu, Japan) – 10. 51

7 / 84



Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Evolution during these last 20 years
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Introduction: parallelism and resource management

Predictions for the next years
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Introduction: parallelism and resource management

A deeper look: evolution by countries
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Introduction: parallelism and resource management

A deeper look at the countries in 2013
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Introduction: parallelism and resource management

Repartition of the running applications
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Introduction: parallelism and resource management

Number of cores
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Introduction: parallelism and resource management

Type of architectures
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Introduction: parallelism and resource management

Order of magnitude

Comparison with today computing platforms in term of maximal
performances (in GigaFlops).
In the TOP’500 from 1993, the most powerful machine reached 59
GigaFlops.
20 years later, the basic processors are more powerful (the Galaxy
– or Iphone – under Android are not too far!).
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Introduction: parallelism and resource management

The computing landscape today...

New and future high performance computing platforms

Computational grids

Desktop grids (volunteer computing)

Hybrid multi- and many- cores (accelerators)

Clouds
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Introduction: parallelism and resource management

Common characteristics in all kind of most platforms

Very large number of resources

Distributed features (hierarchical structure)

Heterogeneity (with accelerators)

Uncertainties on data at any level

Energy limitations

The challenge today is on the automation and universality of
software (and tuning) tools
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Introduction: parallelism and resource management

Emergence of new parallel platforms

The evolution of high-performance execution platforms leads to
physical or logical distributed entities (called organizations) which
have their own local rules. For instance, CiGri platform in Grenoble.
Each organization is composed of multiple users who compete for
the resources, and they aim at optimizing their own objectives.
Such systems are often hierarchical (many-core).

Proposal:

To create a general framework for studying the resource allocation
problem for most situations and study in this context the concept
of cooperation.
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Introduction: parallelism and resource management

Multi-organization scheduling

Informally, a set of users have some applications to execute on
distributed resources. These resources belong potentially to
multiple organizations that may have their local control and rules.
The objectives of the users are not necessarily the same, but they
are related to a metric on the completion times (i.e. the finishing
times) of the jobs.
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Introduction: parallelism and resource management

Synthetic view of the problem
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Introduction: parallelism and resource management

More formally

The problem is to allocate the jobs to the available resources
according of a certain objective. Then, the jobs are scheduled
locally.

The set of jobs is available at time 0, the execution is performed
by a series of successive time frames (called batches).
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Introduction: parallelism and resource management

Formally

The parallel platforms are viewed as entities which have all their
local rules. Each physical entity is composed of users who compete
for resources with their own needs or wishes.

Generic problem

to allocate jobs to available computing (or networking) distributed
resources aiming at optimizing some objective.
Then, execute them locally.

We have to determine when and where to execute the jobs. This
corresponds to two interleaved problems, namely π (allocation)
and σ (scheduling).
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Introduction: parallelism and resource management

Some notations

m ”machines”

n jobs de duration pj for 1 ≤ j ≤ n (sometimes the jobs are
them-selves parallel applications)

N users, owning each ni jobs

Practically (in existing systems), several priority queues which
manage the jobs according to some policy (FCFS and its variants
like back filling).
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Introduction: parallelism and resource management

Problems classification

Key parameters

Users

Applications (jobs)

Resources

Control

Objective(s)
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Introduction: parallelism and resource management

Methodology for the analysis

Modelization and formal definition of the problem

Complexity analysis (NP-completeness, inapproximation)

Algorithms design

Analysis (worst case bounds, simulations, realistic testbeds)

The idea is to study various problems with the same way (and
create adequate common tools).
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Introduction: parallelism and resource management

Brief recall on complexity

We distinguish between easy problem (those for which there exists
polynomial algorithms) and hard problems. These problems are
characterized by their ability to check if a solution is valid (in
polynomial time).
We do not expect exact solutions for big instances, thus, we are
looking for approximation algorithms running in reasonable times.
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Introduction: parallelism and resource management

Example
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Classical Scheduling

Starting smoothly with well-known results

A preliminary basic problem

Users: single or multiple, uniform or heterogeneous

Jobs: sequential, parallel (rigid or malleable), divisible loads

Resources: single, identical , hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch
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Classical Scheduling

Classical P ||Cmax problem

Informally, this corresponds to the situation of a single
(homogeneous) cluster.
Scheduling n independent jobs on m arbitrary parallel identical
processors aiming at minimizing Cmax.

Complexity:

The problem is weakly NP-hard [Ullman’75].
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Classical Scheduling

Solving by a list algorithm

Algorithm framework:
List-scheduling [Graham’69] (greedy) whose principle is to build a
list of ready jobs, and to execute any of these jobs as soon there
are available processors. This algorithm has a guarantee in the
worst case.

Remarks:
(asymptotically) optimal algorithm for a large number of jobs.
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Classical Scheduling

Analysis 1

The idea is based on a geometrical proof on the Gantt chart:

m

≤ pmax

Cmax

m.Cmax = W + Sidle (where W = Σjpj)
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Classical Scheduling

Analysis 2

Proposition.

List scheduling is a 2-approximation.

m.Cmax = W + Sidle

Lower bounds:
Cmax∗ ≥ W

m and Cmax∗ ≥ pmax

Sidle ≤ (m − 1).pmax ≤ (m − 1).Cmax∗

Cmax = W
m + Sidle

m ≤ (1 + m−1
m ).Cmax∗
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Classical Scheduling

Tightness for general list scheduling

Proposition.

The worst case bound of 2− 1
m for list scheduling is tight.

time time
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Classical Scheduling

improvement: the LPT rule

Based on the tightness of the 2-approximation ratio, the bound
can be improved by considering the specific LPT policy (largest
processing times first):

Approximation bound: 4
3 (for m ≥ 2)
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Classical Scheduling

Tightness of LPT

Proposition.

The worst case bound of 4
3 −

1
3m for LPT is tight.

time time
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Classical Scheduling

Synthesis

List is a very nice framework which realizes a good trade-off
between simplicity and efficiency.
It can be extended to many cases, sometimes it is possible to
analyze theoretically.

other objectives (ΣCi with the ”reverse” SPT policy which is
optimal for n independent jobs on m machines)

taking into account communication costs

Parallel rigid jobs
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Strip Packing

Problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel rigid or malleable,
divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch
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Strip Packing

Rigid jobs

Rigid jobs correspond to parallel applications
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Strip Packing
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Strip Packing

Problem statement

Problem:
Given n independent rigid jobs to be scheduled on one cluster
composed of m identical machines minimizing the makespan Cmax .

Cmax
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Strip Packing

Complexity results for one strip

The problem is obviously NP-hard.

It is 3
2 -inapproximable unless P = NP

C∗
max = 2 C∗

max = 3

YES-Instan
e NO-Instan
e
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Strip Packing

Algorithms for one strip

List Scheduling is still a (2− 1
m )-approximation for non

continuous case only! Introduced by Graham in 1975 and
revisited recently by Eyraud, Mounié and Trystram in IPDPS
2007.

Steinberg/Schiermeyer: fast 2-approx available for both
versions

Jansen: very costly ( 3
2 + ε)-approx available for both versions

Kenyon-Remila: AsymptoticFPTAS available for both versions
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Strip Packing

Including extra rules

HF (Higest first) is a natural extension (similar to the LPT rule).

Bad news: no better approximation as for general list (open
question)
Good news: nice dominance rule
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Strip Packing

Analysis of HF policy

HF (Highest first) is a list algorithm that sorts the jobs by
non-increasing order of their height.

                      high utilization zone (I) 

(more than 50% of processors are busy) 
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Strip Packing

Approximation algorithm - analysis

Proposition.

The previous algorithm is a 3-approximation even for irregular strip
sizes.

Zone (I) 

3LB 

Zone (I) Zone (II) 
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Strip Packing

Analysis of HF policy

Local  

schedules 

Multi-org LB  

load balance 

O3 

O1 

O2 

O4 
O5 

O3 

O1 

O2 

O4 
O5 

O3 

O1 

O2 

O4 

O5 

O3 

O1 

O2 

O4 

O5 

Compact 
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Multiple strip Packing

Problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel rigid or malleable,
divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch
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Multiple strip Packing

Scheduling rigid parallel jobs

Problem: Given n independent rigid tasks and k cluster
(cluster Cli owns mi machines), schedule all the jobs
minimizing the makespan Cmax .

The continuous Vs non continuous discussion still holds..
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Cl1

Cl3

Cl2

m1

m3

m2

Cmax
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Multiple strip Packing

Negative result for Multi-Strip

- multi-SP are 2-innapproximable unless P = NP, even for
k = 2 strips

C∗
max = 1 C∗

max = 2

YES-Instan
e NO-Instan
e
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Multiple strip Packing

Toward positive results for multiSP

How getting a 5
2 ratio for regular multiSP?

Using LS again: consider the last finishing task (of size (p, q))
starting at time s

Thus we need small values of p and q

W ≥ ks(m − q)and thus

Cmax = s + p

≤ W

k(m − q)
+ p

≤ m

(m − q) W
km + p

≤ C ∗
max(

m

m − q
+ 1)

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

q
p

s
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Multiple strip Packing

Toward positive results for HSP

We want (for example) p ≤ C∗
max
2 and q ≤ m

2 , directly leading
to a 5

2 ratio.

Thus, we first schedule carefully all jobs having p > C∗
max
2 or

q > m
2 using simple structures like shelves and layers.

Then, we add using LS the small remaining jobs

q
p
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Selfishness

Add local constraints

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax , ΣCi, stretch
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Selfishness

Motivations

In the last results, different organizations shared processors and
exchange jobs in order to maximize the profits of the whole
community.

Locally, an organization can act selfishly and refuse to cooperate if
in the final schedule one of its (migrated) jobs could be executed
earlier in one of its own processors.
The focus here is to study the impact on the global performance
(Cmax) of cooperation between selfish organizations. The local
objectives are to minimize local Cmax .

Notation:
MOSP(Cmax).
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Selfishness

Motivations

In the last results, different organizations shared processors and
exchange jobs in order to maximize the profits of the whole
community.
Locally, an organization can act selfishly and refuse to cooperate if
in the final schedule one of its (migrated) jobs could be executed
earlier in one of its own processors.
The focus here is to study the impact on the global performance
(Cmax) of cooperation between selfish organizations. The local
objectives are to minimize local Cmax .

Notation:
MOSP(Cmax).

57 / 84



Coopération en Informatique Parallèle

Selfishness

MOSP constraints

N

...

O(1)

O
(2)

O
(N)

time

O
(3)

...

...

...

1 1 1
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1 1 1

N

(a) Initial instance

N

...

O(1)

O
(2)

O
(N)

time

O
(3)

...

... 111
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N

1

1

1

1

(b) Global optimum with-
out constraints
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Selfishness

Selfishness restrictions 1

O(1)

O(2)

O(3)

time

J
(1)
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Selfishness

Selfishness restrictions 2

Inapproximation.

MOSP(Cmax) is strongly NP-complete.
Ratio between approximation algorithms with and without
selfishness restrictions: ≥ 2− 2

N

N-1

...

O(1)

O
(2)

O
(N)

time

O
(3)

N-1

N-1

N-1

...1 1 1 1

(e) Optimal with selfishness re-
strictions

...
O(1)

O
(2)

O
(N)

time

O
(3)

N-1

N-1

N-1

...

1

N-1 1

1

1

(f) Optimal with local constraints
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Selfishness

Approximation algorithms

The idea is (again) to use LPT for solving MOSP with selfish
restrictions.

Phase 1: If solving MOSP(Cmax), each organization applies LPT
locally for its own jobs.

Phase 2: Global LPT: each time an organization becomes idle, the
longest job that does not have started yet is migrated and
executed by the idle organization.
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Selfishness

Analysis

Proposition:

MOSP is a 2-approximation.

Proof.

Phase 2 works as a list scheduling, so Graham’s classical
approximation ratio 2− 1

N holds for all of them.

It is feasible since the migrated jobs are always executed
earlier than the original schedule; this guarantees that the
selfishness restriction is always respected and that both Cmax
of the original organization is not increased;
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Multi-organization scheduling

Model of multi-organization scheduling

organizations O(u) have resources (clusters) and some local

jobs {J(u)
i }

system goal: global makespan Cmax

each organization minimizes the makespan of its local jobs

C
(u)
max = maxi C

(u)
i

idea: move jobs across clusters to optimize Cmax
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Multi-organization scheduling

Multi-objective optimization based on constraints on
organizations’ objectives

Parallel rigid jobs.

an organization can not increase its local makespan C
(u)
max by

cooperating with others

schedule jobs locally (with makespan C
(u)
max(loc))

optimization: min max C
(u)
max subject to ∀u : C

(u)
max ≤ C

(u)
i (loc)
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Multi-organization scheduling

Complexity

The problem is strongly NP-hard, even if each organization has
only 2 jobs.

Lower bound of 3
2 on the global makespan (easy instance).
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Multi-organization scheduling

Outline of the scheduling algorithm (MOCCA)

3-approximation of the global makespan where the local
constraints are not violated

1 schedule jobs locally using highest-first (HF) ordering

2 unschedule jobs that complete after 3LB (LB is lower bound
on the global makespan), sort them by HF

3 schedule large (> m/2) jobs backwards from 3LB

4 schedule remaining jobs in the gaps of the schedule
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Multi-organization scheduling

Example run: first, we ensure the worst-case performance
. . .

(a) local scheduling

(b) MOCCA with gaps
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Multi-organization scheduling

Example run: . . . then, we collapse the schedule.

(b) MOCCA with gaps

(c) MOCCA, collapsed
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Relaxed multi-organization scheduling
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Relaxed multi-organization scheduling

Local versus Global

Strict constraints
MOSP’s local and selfishness constraints are too strict in practice.
They strongly limit the freedom of the scheduler to find a good
global Cmax.

A clear trade-off
There is a correlation between the guarantees that we can provide
individually for each organization and the global performance of
the platform.

Question

How much can we improve the global Cmax of the entire platform
if we allow some controlled degradation of the local performance?
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The α-Cooperative Multi-Organization Scheduling

Definition
We denote as (α, β) a schedule that allows the local objectives to
be degraded by a factor α in order to guarantee a β-approximation
for the global Cmax.
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Analysis of the degree of cooperation as a bi-objective problem.

local 

global 

3/2 

4/3 
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Figure : Inapproximation points given by Family 1 for N = 4
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Relaxed multi-organization scheduling

79 / 84



Coopération en Informatique Parallèle
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Previously known guaranteed algorithms
Algorithms 1 and 2
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Conclusion

Concluding remarks

This talk illustrated a way of solving problems coming from the
resource management in new cooperative parallel platforms.

Take home message

It was possible to study the problem by the degree of cooperation
that could be imposed to the participants of the platform.
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Conclusion

Current research directions

Put the user in the loop: in what extent it is possible to consider
the individual objectives in such platforms?
The key notion here is the fairness.
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