
Coopération en Informatique Parallèle

Coopération en Informatique Parallèle

Denis TRYSTRAM
Grenoble INP - IUF (labo LIG)

octobre, 2013

1 / 84

Coopération en Informatique Parallèle

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

2 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

3 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Parallel everywhere

Informally, parallelism is the simultaneous use of multiple
computing devices (whatever they are).
Today. (Example of molecular dynamics):

The codes are multi-scale (classical dynamic and quantum
chemistry).

Several hundreds of thousands atoms.

Sophisticated visualization modules.

In Situ simulations (adaptive).

4 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

HPC (High Performance Computing)

TOP500: an international organization created in 1993.
Website updated twice a year.

Main goal: to rank the most powerful computing platforms.
Historical data, stats, evolution tendencies (energy, accelerators),
...

5 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Petit intermède culturel...

Performance scale: 103

Mega

Giga (Giant)

Tera (monster)

Peta

Exa

...

6 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Evolution of computing: The TOP’500

http://www.top500.org/statistics/perfdevel/
maximum performance (in PetaFlops) and efficiency (average on
peak)

Tianhe-2 Milky Way-2 (China) – 33.86

Titan (Cray - USA) – 17.59

Sequoia (IBM - USA) – 17.17

K-computer (Fujitsu, Japan) – 10. 51

7 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Evolution during these last 20 years

8 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Predictions for the next years

9 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

A deeper look: evolution by countries

10 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

A deeper look at the countries in 2013

11 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Repartition of the running applications

12 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Number of cores

13 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Type of architectures

14 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Order of magnitude

Comparison with today computing platforms in term of maximal
performances (in GigaFlops).
In the TOP’500 from 1993, the most powerful machine reached 59
GigaFlops.
20 years later, the basic processors are more powerful (the Galaxy
– or Iphone – under Android are not too far!).

15 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

The computing landscape today...

New and future high performance computing platforms

Computational grids

Desktop grids (volunteer computing)

Hybrid multi- and many- cores (accelerators)

Clouds

16 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Common characteristics in all kind of most platforms

Very large number of resources

Distributed features (hierarchical structure)

Heterogeneity (with accelerators)

Uncertainties on data at any level

Energy limitations

The challenge today is on the automation and universality of
software (and tuning) tools

17 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Emergence of new parallel platforms

The evolution of high-performance execution platforms leads to
physical or logical distributed entities (called organizations) which
have their own local rules. For instance, CiGri platform in Grenoble.
Each organization is composed of multiple users who compete for
the resources, and they aim at optimizing their own objectives.
Such systems are often hierarchical (many-core).

Proposal:

To create a general framework for studying the resource allocation
problem for most situations and study in this context the concept
of cooperation.

18 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Multi-organization scheduling

Informally, a set of users have some applications to execute on
distributed resources. These resources belong potentially to
multiple organizations that may have their local control and rules.
The objectives of the users are not necessarily the same, but they
are related to a metric on the completion times (i.e. the finishing
times) of the jobs.

19 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Synthetic view of the problem

20 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

More formally

The problem is to allocate the jobs to the available resources
according of a certain objective. Then, the jobs are scheduled
locally.

The set of jobs is available at time 0, the execution is performed
by a series of successive time frames (called batches).

21 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Formally

The parallel platforms are viewed as entities which have all their
local rules. Each physical entity is composed of users who compete
for resources with their own needs or wishes.

Generic problem

to allocate jobs to available computing (or networking) distributed
resources aiming at optimizing some objective.
Then, execute them locally.

We have to determine when and where to execute the jobs. This
corresponds to two interleaved problems, namely π (allocation)
and σ (scheduling).

22 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Some notations

m ”machines”

n jobs de duration pj for 1 ≤ j ≤ n (sometimes the jobs are
them-selves parallel applications)

N users, owning each ni jobs

Practically (in existing systems), several priority queues which
manage the jobs according to some policy (FCFS and its variants
like back filling).

23 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Problems classification

Key parameters

Users

Applications (jobs)

Resources

Control

Objective(s)

24 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Methodology for the analysis

Modelization and formal definition of the problem

Complexity analysis (NP-completeness, inapproximation)

Algorithms design

Analysis (worst case bounds, simulations, realistic testbeds)

The idea is to study various problems with the same way (and
create adequate common tools).

25 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Methodology for the analysis

Modelization and formal definition of the problem

Complexity analysis (NP-completeness, inapproximation)

Algorithms design

Analysis (worst case bounds, simulations, realistic testbeds)

The idea is to study various problems with the same way (and
create adequate common tools).

25 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Brief recall on complexity

We distinguish between easy problem (those for which there exists
polynomial algorithms) and hard problems. These problems are
characterized by their ability to check if a solution is valid (in
polynomial time).
We do not expect exact solutions for big instances, thus, we are
looking for approximation algorithms running in reasonable times.

26 / 84

Coopération en Informatique Parallèle

Introduction: parallelism and resource management

Example

27 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

28 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Starting smoothly with well-known results

A preliminary basic problem

Users: single or multiple, uniform or heterogeneous

Jobs: sequential, parallel (rigid or malleable), divisible loads

Resources: single, identical , hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch

29 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Classical P ||Cmax problem

Informally, this corresponds to the situation of a single
(homogeneous) cluster.
Scheduling n independent jobs on m arbitrary parallel identical
processors aiming at minimizing Cmax.

Complexity:

The problem is weakly NP-hard [Ullman’75].

30 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Solving by a list algorithm

Algorithm framework:
List-scheduling [Graham’69] (greedy) whose principle is to build a
list of ready jobs, and to execute any of these jobs as soon there
are available processors. This algorithm has a guarantee in the
worst case.

Remarks:
(asymptotically) optimal algorithm for a large number of jobs.

31 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Analysis 1

The idea is based on a geometrical proof on the Gantt chart:

m

≤ pmax

Cmax

m.Cmax = W + Sidle (where W = Σjpj)

32 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Analysis 2

Proposition.

List scheduling is a 2-approximation.

m.Cmax = W + Sidle

Lower bounds:
Cmax∗ ≥ W

m and Cmax∗ ≥ pmax

Sidle ≤ (m − 1).pmax ≤ (m − 1).Cmax∗

Cmax = W
m + Sidle

m ≤ (1 + m−1
m).Cmax∗

33 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Analysis 2

Proposition.

List scheduling is a 2-approximation.

m.Cmax = W + Sidle

Lower bounds:
Cmax∗ ≥ W

m and Cmax∗ ≥ pmax

Sidle ≤ (m − 1).pmax ≤ (m − 1).Cmax∗

Cmax = W
m + Sidle

m ≤ (1 + m−1
m).Cmax∗

33 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Analysis 2

Proposition.

List scheduling is a 2-approximation.

m.Cmax = W + Sidle

Lower bounds:
Cmax∗ ≥ W

m and Cmax∗ ≥ pmax

Sidle ≤ (m − 1).pmax ≤ (m − 1).Cmax∗

Cmax = W
m + Sidle

m ≤ (1 + m−1
m).Cmax∗

33 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Tightness for general list scheduling

Proposition.

The worst case bound of 2− 1
m for list scheduling is tight.

time time

34 / 84

Coopération en Informatique Parallèle

Classical Scheduling

improvement: the LPT rule

Based on the tightness of the 2-approximation ratio, the bound
can be improved by considering the specific LPT policy (largest
processing times first):

Approximation bound: 4
3 (for m ≥ 2)

35 / 84

Coopération en Informatique Parallèle

Classical Scheduling

improvement: the LPT rule

Based on the tightness of the 2-approximation ratio, the bound
can be improved by considering the specific LPT policy (largest
processing times first):

Approximation bound: 4
3 (for m ≥ 2)

35 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Tightness of LPT

Proposition.

The worst case bound of 4
3 −

1
3m for LPT is tight.

time time

36 / 84

Coopération en Informatique Parallèle

Classical Scheduling

Synthesis

List is a very nice framework which realizes a good trade-off
between simplicity and efficiency.
It can be extended to many cases, sometimes it is possible to
analyze theoretically.

other objectives (ΣCi with the ”reverse” SPT policy which is
optimal for n independent jobs on m machines)

taking into account communication costs

Parallel rigid jobs

37 / 84

Coopération en Informatique Parallèle

Strip Packing

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

38 / 84

Coopération en Informatique Parallèle

Strip Packing

Problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel rigid or malleable,
divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch

39 / 84

Coopération en Informatique Parallèle

Strip Packing

Rigid jobs

Rigid jobs correspond to parallel applications

40 / 84

Coopération en Informatique Parallèle

Strip Packing

41 / 84

Coopération en Informatique Parallèle

Strip Packing

Problem statement

Problem:
Given n independent rigid jobs to be scheduled on one cluster
composed of m identical machines minimizing the makespan Cmax .

Cmax

42 / 84

Coopération en Informatique Parallèle

Strip Packing

Complexity results for one strip

The problem is obviously NP-hard.

It is 3
2 -inapproximable unless P = NP

C∗
max = 2 C∗

max = 3

YES-Instan
e NO-Instan
e

43 / 84

Coopération en Informatique Parallèle

Strip Packing

Complexity results for one strip

The problem is obviously NP-hard.

It is 3
2 -inapproximable unless P = NP

C∗
max = 2 C∗

max = 3

YES-Instan
e NO-Instan
e

43 / 84

Coopération en Informatique Parallèle

Strip Packing

Algorithms for one strip

List Scheduling is still a (2− 1
m)-approximation for non

continuous case only! Introduced by Graham in 1975 and
revisited recently by Eyraud, Mounié and Trystram in IPDPS
2007.

Steinberg/Schiermeyer: fast 2-approx available for both
versions

Jansen: very costly (3
2 + ε)-approx available for both versions

Kenyon-Remila: AsymptoticFPTAS available for both versions

44 / 84

Coopération en Informatique Parallèle

Strip Packing

Including extra rules

HF (Higest first) is a natural extension (similar to the LPT rule).

Bad news: no better approximation as for general list (open
question)
Good news: nice dominance rule

45 / 84

Coopération en Informatique Parallèle

Strip Packing

Analysis of HF policy

HF (Highest first) is a list algorithm that sorts the jobs by
non-increasing order of their height.

 high utilization zone (I)

(more than 50% of processors are busy)

46 / 84

Coopération en Informatique Parallèle

Strip Packing

Approximation algorithm - analysis

Proposition.

The previous algorithm is a 3-approximation even for irregular strip
sizes.

Zone (I)

3LB

Zone (I) Zone (II)

47 / 84

Coopération en Informatique Parallèle

Strip Packing

Analysis of HF policy

Local

schedules

Multi-org LB

load balance

O3

O1

O2

O4
O5

O3

O1

O2

O4
O5

O3

O1

O2

O4

O5

O3

O1

O2

O4

O5

Compact

48 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

49 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Problem

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel rigid or malleable,
divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax, ΣCi , stretch

50 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Scheduling rigid parallel jobs

Problem: Given n independent rigid tasks and k cluster
(cluster Cli owns mi machines), schedule all the jobs
minimizing the makespan Cmax .

The continuous Vs non continuous discussion still holds..

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

Cl1

Cl3

Cl2

m1

m3

m2

Cmax

51 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Negative result for Multi-Strip

- multi-SP are 2-innapproximable unless P = NP, even for
k = 2 strips

C∗
max = 1 C∗

max = 2

YES-Instan
e NO-Instan
e

52 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for multiSP

How getting a 5
2 ratio for regular multiSP?

Using LS again: consider the last finishing task (of size (p, q))
starting at time s

Thus we need small values of p and q

W ≥ ks(m − q)and thus

Cmax = s + p

≤ W

k(m − q)
+ p

≤ m

(m − q) W
km + p

≤ C ∗
max(

m

m − q
+ 1)

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

q
p

s

53 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for multiSP

How getting a 5
2 ratio for regular multiSP?

Using LS again: consider the last finishing task (of size (p, q))
starting at time s

Thus we need small values of p and q

W ≥ ks(m − q)and thus

Cmax = s + p

≤ W

k(m − q)
+ p

≤ m

(m − q) W
km + p

≤ C ∗
max(

m

m − q
+ 1)

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

q
p

s

53 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for multiSP

How getting a 5
2 ratio for regular multiSP?

Using LS again: consider the last finishing task (of size (p, q))
starting at time s

Thus we need small values of p and q

W ≥ ks(m − q)and thus

Cmax = s + p

≤ W

k(m − q)
+ p

≤ m

(m − q) W
km + p

≤ C ∗
max(

m

m − q
+ 1)

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

q
p

s

53 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for multiSP

How getting a 5
2 ratio for regular multiSP?

Using LS again: consider the last finishing task (of size (p, q))
starting at time s

Thus we need small values of p and q

W ≥ ks(m − q)and thus

Cmax = s + p

≤ W

k(m − q)
+ p

≤ m

(m − q) W
km + p

≤ C ∗
max(

m

m − q
+ 1)

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����

����
����
����

q
p

s

53 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for HSP

We want (for example) p ≤ C∗
max
2 and q ≤ m

2 , directly leading
to a 5

2 ratio.

Thus, we first schedule carefully all jobs having p > C∗
max
2 or

q > m
2 using simple structures like shelves and layers.

Then, we add using LS the small remaining jobs

q
p

54 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for HSP

We want (for example) p ≤ C∗
max
2 and q ≤ m

2 , directly leading
to a 5

2 ratio.

Thus, we first schedule carefully all jobs having p > C∗
max
2 or

q > m
2 using simple structures like shelves and layers.

Then, we add using LS the small remaining jobs

q
p

54 / 84

Coopération en Informatique Parallèle

Multiple strip Packing

Toward positive results for HSP

We want (for example) p ≤ C∗
max
2 and q ≤ m

2 , directly leading
to a 5

2 ratio.

Thus, we first schedule carefully all jobs having p > C∗
max
2 or

q > m
2 using simple structures like shelves and layers.

Then, we add using LS the small remaining jobs

q
p

54 / 84

Coopération en Informatique Parallèle

Selfishness

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

55 / 84

Coopération en Informatique Parallèle

Selfishness

Add local constraints

Users: single or multiple, uniform or heterogeneous

Type of applications: sequential, parallel (rigid or
malleable), divisible loads

Resources: single, identical, hierarchical, heterogeneous

Control: centralized or distributed

Objectives: Cmax , ΣCi, stretch

56 / 84

Coopération en Informatique Parallèle

Selfishness

Motivations

In the last results, different organizations shared processors and
exchange jobs in order to maximize the profits of the whole
community.

Locally, an organization can act selfishly and refuse to cooperate if
in the final schedule one of its (migrated) jobs could be executed
earlier in one of its own processors.
The focus here is to study the impact on the global performance
(Cmax) of cooperation between selfish organizations. The local
objectives are to minimize local Cmax .

Notation:
MOSP(Cmax).

57 / 84

Coopération en Informatique Parallèle

Selfishness

Motivations

In the last results, different organizations shared processors and
exchange jobs in order to maximize the profits of the whole
community.
Locally, an organization can act selfishly and refuse to cooperate if
in the final schedule one of its (migrated) jobs could be executed
earlier in one of its own processors.
The focus here is to study the impact on the global performance
(Cmax) of cooperation between selfish organizations. The local
objectives are to minimize local Cmax .

Notation:
MOSP(Cmax).

57 / 84

Coopération en Informatique Parallèle

Selfishness

MOSP constraints

N

...

O(1)

O
(2)

O
(N)

time

O
(3)

...

...

...

1 1 1

111

1 1 1

N

(a) Initial instance

N

...

O(1)

O
(2)

O
(N)

time

O
(3)

...

... 111

1 1 1

N

1

1

1

1

(b) Global optimum with-
out constraints

58 / 84

Coopération en Informatique Parallèle

Selfishness

MOSP constraints

N

...

O(1)

O
(2)

O
(N)

time

O
(3)

...

... 111

1 1 1

N

1

1

1

1

(c) Global optimum with-
out constraints

N

...

O(1)

O
(2)

O
(N)

time

O
(3)

...

... 111

1 1 1

N

1 1...

1 1...

N/2

(d) Optimum with local
constraints

59 / 84

Coopération en Informatique Parallèle

Selfishness

Selfishness restrictions 1

O(1)

O(2)

O(3)

time

J
(1)

60 / 84

Coopération en Informatique Parallèle

Selfishness

Selfishness restrictions 2

Inapproximation.

MOSP(Cmax) is strongly NP-complete.
Ratio between approximation algorithms with and without
selfishness restrictions: ≥ 2− 2

N

N-1

...

O(1)

O
(2)

O
(N)

time

O
(3)

N-1

N-1

N-1

...1 1 1 1

(e) Optimal with selfishness re-
strictions

...
O(1)

O
(2)

O
(N)

time

O
(3)

N-1

N-1

N-1

...

1

N-1 1

1

1

(f) Optimal with local constraints

61 / 84

Coopération en Informatique Parallèle

Selfishness

Approximation algorithms

The idea is (again) to use LPT for solving MOSP with selfish
restrictions.

Phase 1: If solving MOSP(Cmax), each organization applies LPT
locally for its own jobs.

Phase 2: Global LPT: each time an organization becomes idle, the
longest job that does not have started yet is migrated and
executed by the idle organization.

62 / 84

Coopération en Informatique Parallèle

Selfishness

Analysis

Proposition:

MOSP is a 2-approximation.

Proof.

Phase 2 works as a list scheduling, so Graham’s classical
approximation ratio 2− 1

N holds for all of them.

It is feasible since the migrated jobs are always executed
earlier than the original schedule; this guarantees that the
selfishness restriction is always respected and that both Cmax
of the original organization is not increased;

63 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

64 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Model of multi-organization scheduling

organizations O(u) have resources (clusters) and some local

jobs {J(u)
i }

system goal: global makespan Cmax

each organization minimizes the makespan of its local jobs

C
(u)
max = maxi C

(u)
i

idea: move jobs across clusters to optimize Cmax

65 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Multi-objective optimization based on constraints on
organizations’ objectives

Parallel rigid jobs.

an organization can not increase its local makespan C
(u)
max by

cooperating with others

schedule jobs locally (with makespan C
(u)
max(loc))

optimization: min max C
(u)
max subject to ∀u : C

(u)
max ≤ C

(u)
i (loc)

66 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Complexity

The problem is strongly NP-hard, even if each organization has
only 2 jobs.

Lower bound of 3
2 on the global makespan (easy instance).

67 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Outline of the scheduling algorithm (MOCCA)

3-approximation of the global makespan where the local
constraints are not violated

1 schedule jobs locally using highest-first (HF) ordering

2 unschedule jobs that complete after 3LB (LB is lower bound
on the global makespan), sort them by HF

3 schedule large (> m/2) jobs backwards from 3LB

4 schedule remaining jobs in the gaps of the schedule

68 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Example run: first, we ensure the worst-case performance
. . .

(a) local scheduling

(b) MOCCA with gaps

69 / 84

Coopération en Informatique Parallèle

Multi-organization scheduling

Example run: . . . then, we collapse the schedule.

(b) MOCCA with gaps

(c) MOCCA, collapsed

70 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

71 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

Local versus Global

Strict constraints
MOSP’s local and selfishness constraints are too strict in practice.
They strongly limit the freedom of the scheduler to find a good
global Cmax.

A clear trade-off
There is a correlation between the guarantees that we can provide
individually for each organization and the global performance of
the platform.

Question

How much can we improve the global Cmax of the entire platform
if we allow some controlled degradation of the local performance?

72 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

Local versus Global

Strict constraints
MOSP’s local and selfishness constraints are too strict in practice.
They strongly limit the freedom of the scheduler to find a good
global Cmax.

A clear trade-off
There is a correlation between the guarantees that we can provide
individually for each organization and the global performance of
the platform.

Question

How much can we improve the global Cmax of the entire platform
if we allow some controlled degradation of the local performance?

72 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

The α-Cooperative Multi-Organization Scheduling

Definition
We denote as (α, β) a schedule that allows the local objectives to
be degraded by a factor α in order to guarantee a β-approximation
for the global Cmax.

73 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

74 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

Analysis of the degree of cooperation as a bi-objective problem.

local

global

3/2

4/3

75 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

G
lo
b
a
l
C
m
a
x

Local Cmax

(3; 4/3)

Family 1 inapprox. points

Figure : Inapproximation points given by Family 1 for N = 4

76 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

G
lo
b
a
l
C
m
a
x

Local Cmax

(2; 3/2)

(3; 4/3)

(4; 5/4) (5; 6/5)

Family 1 inapprox. points

Figure : Inapproximation points given by Family 1 for N = 3, 4, 5, 6

76 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

G
lo
b
a
l
C
m
a
x

Local Cmax

(3/2; 5/3)
(4/3; 7/4)

(5/4; 9/5)

(10/9; 19/10)
First 10 inapprox. points of Family 2

77 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

G
lo

b
a
l
C
m

a
x

Local Cmax

(2; 3/2)

(3; 4/3)

(4; 5/4) (5; 6/5)

(3/2; 5/3)
(4/3; 7/4)

(5/4; 9/5)

(10/9; 19/10)

Family 1 inapprox. points
First 10 inapprox. points of Family 2

77 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

78 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

79 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

80 / 84

Coopération en Informatique Parallèle

Relaxed multi-organization scheduling

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

G
lo
b
a
l
C
m
a
x

Local Cmax

(2; 3/2)

(3; 4/3)

(1; 2)

(3; 3/2)

(4; 4/3)

Previously known guaranteed algorithms
Algorithms 1 and 2

81 / 84

Coopération en Informatique Parallèle

Conclusion

Outline

1 Introduction: parallelism and resource management

2 Classical Scheduling

3 Strip Packing

4 Multiple strip Packing

5 Selfishness

6 Multi-organization scheduling

7 Relaxed multi-organization scheduling

8 Conclusion

82 / 84

Coopération en Informatique Parallèle

Conclusion

Concluding remarks

This talk illustrated a way of solving problems coming from the
resource management in new cooperative parallel platforms.

Take home message

It was possible to study the problem by the degree of cooperation
that could be imposed to the participants of the platform.

83 / 84

Coopération en Informatique Parallèle

Conclusion

Current research directions

Put the user in the loop: in what extent it is possible to consider
the individual objectives in such platforms?
The key notion here is the fairness.

84 / 84

	Introduction: parallelism and resource management
	Classical Scheduling
	Strip Packing
	Multiple strip Packing
	Selfishness
	Multi-organization scheduling
	Relaxed multi-organization scheduling
	Conclusion

