
Bipartite Matching Heuristics
with Quality Guarantees on

Shared Memory Parallel Computers

Bora Uçar

CNRS & ENS Lyon, France

9th Scheduling for Large Scale Systems, Lyon, France

Joint work with:

Fanny Dufossé
Inria, Lille,

France

Kamer Kaya
Sabancı University

Istanbul, Turkey

1 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Motivation and context

Bipartite matching is important in many real life applications.

A whole family of practical, exact algorithms start with a fast
heuristic to obtain a large set of initial matching.

Some applications are ok with a suboptimal matching (see [Lotker et
al., SPAA’08], citing routers)

We propose heuristics guided by parallelism and designed for parallel
implementation.

Good theoretical and demonstrated approximation guarantee.

We focus on bipartite graphs corresponding to n × n sparse matrices.

If a maximum matching is sought, not an exact answer.

2 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Some recent work

Lotker, Patt-Shamir, Pettie, SPAA’08: (1− 1/k) approximate matching in
O(k3 log ∆ + k2 log n) time steps with message length of O(log ∆) bits
(for distributed memory).

Blelloch, Fineman, Shun, SPAA’12: maximal matching, O(m) work
O(log3 m) depth algorithm, whp, on a bipartite graph with m edges.
Shared memory implementation.

Birn, Osipov, Sanders, Schulz, Sitchinava, Euro-Par 2013: 1/2
approximate, maximal matching in O(log2 n) time and O(m) work,
implementation in distributed memory, and GPUs.

Azad, Halappanavar, Rajamanickam, Boman, Khan, Pothen, IPDPS’12:
heuristics and exact algorithms on shared memory.

Deveci, Kaya, U., Çatalyürek, ICPP’13, Euro-Par 2013: exact algorithms
on GPUs.

Langguth, Manne, Sanders, ACM JEA, 2010: analysis of heuristics.

3 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Algorithm I

1: for j = 1 to n do
2: cmatch(j)← NIL
3: for i = 1 to n do
4: Randomly pick a column j in row i (uniformly random)
5: cmatch(j)← i

Some columns are picked by many rows but only one of them gets
to be matched.

Some columns are not matched at all, cmatch(·) value remains NIL.

4 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Example

� �����

For each selected red vertex, we can have a mate.

Count the number of red vertices that are not
selected to obtain a bound on the size of the
matching.

5 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Algorithm I – The expected size of a matching

Assumption: all rows and columns have d nonzeros (a row picks one of its
columns with 1/d). Then the probability that the column j is not picked

(1− 1/d)d .

Bounded by the limit (increasing function),

lim
d→∞

(
1− 1

d

)d

=
1

e
.

The expected number of unmatched columns is less than:

n

e
.

Therefore, the above algorithm obtains a matching of size

n

(
1− 1

e

)
≈ n 0.6321 .

6 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Algorithm II – OneSided

The assumption that each row and column has d nonzeros is very
restrictive.

Remedy: Any nonnegative matrix A with a total support can be
scaled to a doubly stochastic matrix with two positive diagonal
matrices, yielding S = D1AD2.

We first do a scaling of the {0, 1}n×n adjacency matrix A and then
perform matching as before.

1: S← doubly stochastic scaling of A
2: for j = 1 to n do
3: cmatch(j)← NIL
4: for i = 1 to n do
5: Randomly pick column j , according to probabilities sij
6: cmatch(j)← i

7 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Algorithm II – The expected size of a matching

Again, the above algorithm obtains a matching of size (proof uses the
arithmetic-geometric mean inequality as an additional machinery)

n

(
1− 1

e

)
≈ n 0.6321

8 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Algorithm III – TwoSided

1: S← doubly stochastic scaling of A
2: E ← ∅
3: for i = 1 to n do
4: Randomly pick a column j , according to probabilities sij
5: E ← E ∪ {(i , j)}
6: for j = 1 to n do
7: Randomly pick a row i , according to probabilities sij
8: E ← E ∪ {(i , j)}
9: Run the Karp-Sipser algorithm on the edges E .

9 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Algorithm III – TwoSided

�� �����

More complicated than before. We need an exact
matching algorithm.

Any matching algorithm would do, but we can do
better by taking advantage of the special structure of
2n edges.

Karp-Sipser heuristic: match a degree-one vertex,
if none, match a random pair.

O(|E |) time complexity, matches all but Õ(n1/5)
vertices of a random undirected graph.

KS heuristics become an exact algorithm for the type
of graphs that are constructed by TwoSided

Conjecture: given a bipartite graph (having perfect

matchings), we can choose a spanning 1-out sub-graph

that has a maximum matching of cardinality 0.866n.

10 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Parallelization on shared memory systems

Scaling algorithms are not our concern here;
(computations are similar to repeated SpMxV; virtually any technique
used in parallelizing SpMxV can be used)

Algorithm II OneSided:

1: S← doubly stochastic scaling of A
2: for j = 1 to n do
3: cmatch(j)← NIL
4: for i = 1 to n do
5: Randomly pick column j ,

according to probabilities sij
6: cmatch(j)← i

Split the rows among the threads with
a parallel for construct. No
synchronization or conflict detection.

Assumption about the computer: one

write survives, in case of concurrent

writes to the same memory location.

11 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Parallelization on shared memory systems

Algorithm III: TwoSided:

1: S← doubly stochastic scaling of A
2: E ← ∅
3: for i = 1 to n do
4: Randomly pick a column j
5: E ← E ∪ {(i , j)}
6: for j = 1 to n do
7: Randomly pick a row i
8: E ← E ∪ {(i , j)}
9: Karp-Sipser on the edges E .

With a standard Karp-Sipser, speedup
is hard to achieve.

We exploit the structure of the graph :

E not kept as a regular edge set

each connected component has at
most one cycle

if degree-one vertices are handled,
we end up with cycles (any
remaining 〈i , pick[i]〉 is valid along
a cycle)

if one degree-one vertex is
matched, then at most one
degree-one vertex is created

12 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

TwoSided – appx guarantee and further notes

Conjecture: Let A be an n × n matrix with total support. Then,
TwoSided obtains, asymptotically always surely, a matching of size
0.866n.

There are experiments supporting the conjecture.

There is some theory too:
Meir and Moon,’74 show: In a random 1-out graph (of n vertices on each
side), the expected maximum cardinality matching is 0.866n.

If we apply TwoSided to a square dense matrix (complete bipartite
graph) we obtain a random 1-out bipartite graph.

Need to run the scaling algorithm for only a few iterations.

We assumed that the initial graph has perfect matchings (for
analysis). This seems to be enough to show appx guarantee.

For practical purposes, we are ok on all bipartite graphs.

13 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Experiments I: Matching quality

743 matrices from UFL: 10 iterations of scaling is enough to obtain
the approximation in all but 37 matrices. They needed 10 more
scaling iterations.

On these graphs can beat standard Karp-Sipser
heuristics dearly.

Graphs without perfect matching: use sprand of Matlab
(Erdös-Rényi matrices); 10 iterations of scaling was again enough to
surpass the approximation guarantees.

14 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Experiments II: Running time

Machine: two Intel Sandybridge-EP CPUs (each 8 cores) clocked at
2.00Ghz and 256GB of memory split across the two NUMA domains.

With 2, 4, 8, 16 threads on a few large matrices from UFL.

Using C and OpenMP parallelism; gcc 4.4.5 with the -O2 optimization
flag; gcc atomic operations

(dynamic, 512) OpenMP scheduling policy is employed while running all
the algorithms except Karp-Sipser; it uses (guided).

speed up values: against a single thread execution (geometric mean of
15/20 executions).

15 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Experiments II: Speed up

Execution times with single thread (secs)
Scaling error ONE KARP TWO

Avg. (number of iterations) SCALE SIDED SIPSER SIDED
Name n # of edges deg. sprank/n 1 5 10 SK MATCH MT MATCH
atmosmodl 1,489,752 10,319,760 6.9 1.00 0.06 0.01 0.00 0.037 0.095 0.236 0.273
audikw_1 943,695 77,651,847 82.2 1.00 0.17 0.02 0.01 0.188 0.364 0.452 0.640
cage15 5,154,859 99,199,551 19.2 1.00 0.18 0.03 0.02 0.306 0.627 1.373 1.679
channel 4,802,000 85,362,744 17.8 1.00 0.10 0.01 0.00 0.274 0.537 0.937 1.211
europe_osm 50,912,018 108,109,320 2.1 0.99 8.43 8.00 8.00 1.625 3.599 9.643 11.270
Hamrle3 1,447,360 5,514,242 3.8 1.00 0.99 0.37 0.15 0.028 0.067 0.196 0.223
hugebubbles 21,198,119 63,580,358 3.0 1.00 0.33 0.17 0.11 1.303 2.840 7.942 9.251
kkt_power 2,063,494 12,771,361 6.2 1.00 13.83 1.27 1.00 0.063 0.132 0.339 0.401
nlpkkt240 27,993,600 760,648,352 26.7 1.00 2.23 0.99 0.71 1.864 3.704 6.642 8.481
road_usa 23,947,347 57,708,624 2.4 0.95 6.08 6.00 6.00 0.712 1.581 4.237 4.949
torso1 116,158 8,516,500 73.3 1.00 0.13 0.02 0.01 0.021 0.040 0.045 0.066
venturiLevel3 4,026,819 16,108,474 4.0 1.00 0.23 0.05 0.03 0.094 0.239 0.672 0.766

TABLE III
SPRANK: THE MAXIMUM CARDINALITY OF A MATCHING; SCALING ERROR: THE MAXIMUM DIFFERENCE BETWEEN ONE AND COLUMN SUMS;

SEQUENTIAL EXECUTION TIMES OF SCALESK(ONE ITERATION), ONESIDEDMATCH, KARPSIPSERMT, AND TWOSIDEDMATCH.

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(a) SCALESK

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(b) ONESIDEDMATCH

Fig. 3. Speedups for SCALESK (left) and ONESIDEDMATCH (right) with a single scaling iteration.

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(a) KARPSIPSERMT

0"

2"

4"

6"

8"

10"

12"

14"

atm
os
mo
dl"

au
dik
w_
1"

ca
ge
15
"

ch
an
ne
l"

eu
rop
e_
os
m"

Ha
mr
le3
"

hg
bu
bb
les
"

kk
t_p
ow
er"

nlp
kk
t24
0"

roa
d_
us
a"

tor
so
1"

ve
ntu
riL
ev
el3
"

sp
ee
du

p&

2" 4" 8" 16"

(b) TWOSIDEDMATCH

Fig. 4. Speedups for KARPSIPSERMT (left) and TWOSIDEDMATCH (right) with a single scaling iteration.

0.55$

0.60$

0.65$

0.70$

0.75$

0.80$

atm
os
mo
dl$

au
dik
w_
1$

ca
ge
15
$

ch
an
ne
l$

eu
rop
e_
os
m$

Ha
mr
le3
$

hg
bu
bb
les
$

kk
t_p
ow
er$

nlp
kk
t24
0$

roa
d_
us
a$

tor
so
1$

ve
ntu
riL
ev
el3
$

M
at
ch
in
g)
Q
ua

lit
y)

0$ 1$ 5$

(a) ONESIDEDMATCH

0.80$

0.82$

0.84$

0.86$

0.88$

0.90$

atm
os
mo
dl$

au
dik
w_
1$

ca
ge
15
$

ch
an
ne
l$

eu
rop
e_
os
m$

Ha
mr
le3
$

hg
bu
bb
les
$

kk
t_p
ow
er$

nlp
kk
t24
0$

roa
d_
us
a$

tor
so
1$

ve
ntu
riL
ev
el3
$

M
at
ch
in
g)
Q
ua

lit
y)

)

0$ 1$ 5$

(b) TWOSIDEDMATCH

Fig. 5. Matching qualities of ONESIDEDMATCH (left) and TWOSIDEDMATCH (right). The horizontal lines are at 0.866 and 0.632, respectively, which are
the approximation guarantees for the heuristics (conjectured for TWOSIDEDMATCH). Legend contain iteration numbers.

16 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Experiments III: Quality wrt the scaling iterations

Matching quality of OneSided

0.55$

0.60$

0.65$

0.70$

0.75$

0.80$

atm
os
mo
dl$

au
dik
w_
1$

ca
ge
15
$

ch
an
ne
l$

eu
rop
e_
os
m$

Ha
mr
le3
$

hg
bu
bb
les
$

kk
t_p
ow
er$

nlp
kk
t24
0$

roa
d_
us
a$

tor
so
1$

ve
ntu
riL
ev
el3
$

M
at
ch
in
g)
Q
ua

lit
y)

0$ 1$ 5$

Matching quality of TwoSided

0.80$

0.82$

0.84$

0.86$

0.88$

0.90$

atm
os
mo
dl$

au
dik
w_
1$

ca
ge
15
$

ch
an
ne
l$

eu
rop
e_
os
m$

Ha
mr
le3
$

hg
bu
bb
les
$

kk
t_p
ow
er$

nlp
kk
t24
0$

roa
d_
us
a$

tor
so
1$

ve
ntu
riL
ev
el3
$

M
at
ch
in
g)
Q
ua

lit
y)

)

0$ 1$ 5$

The horizontal lines are at
0.632 and 0.866....

the approximation
guarantees for the
heuristics (conjectured for
TwoSided).

17 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Concluding remarks

Two heuristics: doubly stochastic scaling + random choices.

One heuristic obtains 1− 1/e appx solutions; other is claimed to
obtain 0.866 appx

One works on n edges, other 2n edges.

One has virtually no parallelization overhead, other runs a
specialized Karp-Sipser.

Speed-ups on unto 16 cores beyond 10 are realized on large bipartite
graphs

What about bipartite graphs corresponding to rectangular matrices?

Extensions to undirected graphs?

18 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Thanks!

Thank you!

http://perso.ens-lyon.fr/bora.ucar/

19 Bipartite Matching

http://perso.ens-lyon.fr/bora.ucar/

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

The sequential algorithm (Ruiz’01)

1: Dr
(0) ← Im×m Dc

(0) ← In×n
2: for k = 1, 2, . . . until convergence do

3: D1 ← diag
(√
‖ri (k)‖`

)
i = 1, . . . ,m

4: D2 ← diag
(√
‖cj (k)‖`

)
j = 1, . . . , n

5: A(k+1) ← D1
(k+1)AD2

(k+1)

6: Dr
(k+1) ← Dr

(k) D1
−1

7: Dc
(k+1) ← Dc

(k) D2
−1

Reminder

ri (k): ith row at it. k

‖x‖∞ = max{|xi |}
‖x‖1 =

∑
|xi |

Notes

`: any vector norm (usually ∞- and 1-norms)
Convergence is achieved when

max
1≤i≤m

{
|1− ‖ri (k)‖`|

}
≤ ε and max

1≤j≤n

{
|1− ‖cj (k)‖`|

}
≤ ε

20 Bipartite Matching

Introduction, recent work, proposed heuristics
Experimental results
Concluding remarks

Experiments : Machine specs

Machine: two Intel Sandybridge-EP CPUs (each 8 cores) clocked at
2.00Ghz and 256GB of memory split across the two NUMA domains.

CPUs: Each CPU has eight-cores (16 cores in total) and
HyperThreading is enabled.

Cores: Each core has its own 32kB L1 cache and 256kB L2 cache.
The 8 cores on a CPU share a 20MB L3 cache.

OS: 64-bit Debian with Linux 2.6.39-bpo.2-amd64.

Using C and OpenMP parallelism; gcc 4.4.5 with the -O2

optimization flag

(dynamic,512) OpenMP scheduling policy is employed while
running all the algorithms except KarpSipser; it uses (guided).

With 2, 4, 8, 16 threads.

For atomic operations, gcc’s built-in functions are used.

21 Bipartite Matching

	Main Talk
	Introduction, recent work, proposed heuristics
	Experimental results
	Concluding remarks

