Bipartite Matching Heuristics
with Quality Guarantees on
Shared Memory Parallel Computers

Bora Ucar
CNRS & ENS Lyon, France

9th Scheduling for Large Scale Systems, Lyon, France

Joint work with:

Fanny Dufossé Kamer Kaya
Inria, Lille, Sabanci University
France Istanbul, Turkey

1 Bipartite Matching

Introduction, recent work, proposed heuristics

Motivation and context

Bipartite matching is important in many real life applications.

A whole family of practical, exact algorithms start with a fast
heuristic to obtain a large set of initial matching.

Some applications are ok with a suboptimal matching (see [
], citing routers)

@ We propose heuristics guided by parallelism and designed for parallel
implementation.

Good theoretical and demonstrated approximation guarantee.

We focus on bipartite graphs corresponding to n X n sparse matrices.

If a maximum matching is sought, not an exact answer.

2 Bipartite Matching

Introduction, recent work, proposed heuristics

Some recent work

° : (1 —1/k) approximate matching in
O(k* log A + k* log n) time steps with message length of O(log A) bits
(for distributed memory).

° : maximal matching, O(m) work
O(log® m) depth algorithm, whp, on a bipartite graph with m edges.
Shared memory implementation.

° 1 1/2
approximate, maximal matching in O(log?® n) time and O(m) work,
implementation in distributed memory, and GPUs.

°
heuristics and exact algorithms on shared memory.

° . exact algorithms
on GPUs.

° . analysis of heuristics.

3 Bipartite Matching

Introduction, recent work, proposed heuristics

Algorithm |

1: for j=1to ndo

2: cmatch(j) « NIL

3: for i=1to ndo

4: Randomly pick a column j in row i (uniformly random)
5. cmatch(j) « i

@ Some columns are picked by many rows but only one of them gets
to be matched.

@ Some columns are not matched at all, cmatch(-) value remains NIL.

4 Bipartite Matching

Introduction, recent work, proposed heuristics

(SET][

A

N

AN\

n edges

For each selected red vertex, we can have a mate.

Count the number of red vertices that are not
selected to obtain a bound on the size of the
matching.

5 Bipartite Matching

Introduction, recent work, proposed heuristics

Algorithm | — The expected size of a matching

Assumption: all rows and columns have d nonzeros (a row picks one of its
columns with 1/d). Then the probability that the column j is not picked

(1-1/d)9.

Bounded by the limit (increasing function),

d
1 1
li 1——-) =-.
dl—)moo (d) e
The expected number of unmatched columns is less than:
n
.

Therefore, the above algorithm obtains a matching of size

n (1 — i) ~ n 0.6321 .

6 Bipartite Matching

Introduction, recent work, proposed heuristics

Algorithm Il — ONESIDED

@ The assumption that each row and column has d nonzeros is very
restrictive.

@ Remedy: Any nonnegative matrix A with a total support can be
scaled to a doubly stochastic matrix with two positive diagonal
matrices, yielding S = D;AD,.

@ We first do a scaling of the {0,1}"*" adjacency matrix A and then
perform matching as before.

: S « doubly stochastic scaling of A

. for j=1to ndo

cmatch(j) < NIL

: fori=1to ndo

Randomly pick column j, according to probabilities Sj;
cmatch(j) < i

7 Bipartite Matching

Introduction, recent work, proposed heuristics

Algorithm Il — The expected size of a matching

Again, the above algorithm obtains a matching of size (proof uses the
arithmetic-geometric mean inequality as an additional machinery)

n <1 — i) ~ n 0.6321

8 Bipartite Matching

Introduction, recent work, proposed heuristics

Algorithm 11l — TWOSIDED

1
2
3
4:
5:
6
7:
8:
9

9 Bipartite Matching

: S + doubly stochastic scaling of A

 E F(Z)

: fori=1to ndo

Randomly pick a column j, according to probabilities Sjj
E « EU{(ij)}

. forj=1to ndo

Randomly pick a row i, according to probabilities Sj;

E — EU{(i.j)}

: Run the Karp-Sipser algorithm on the edges E.

Introduction, recent work, proposed heuristics

Algorithm 11l — TWOSIDED

=

&

NN\

2n edges

More complicated than before. We need an exact
matching algorithm.

Any matching algorithm would do, but we can do
better by taking advantage of the special structure of
2n edges.

@ Karp-Sipser heuristic: match a degree-one vertex,
if none, match a random pair.

@ O(|E|) time complexity, matches all but O(n'/®)
vertices of a random undirected graph.

KS heuristics become an exact algorithm for the type
of graphs that are constructed by TwWOSIDED

Conjecture: given a bipartite graph (having perfect
matchings), we can choose a spanning 1l-out sub-graph
that has a maximum matching of cardinality 0.866n.

10 Bipartite Matching

Introduction, recent work, proposed heuristics

Parallelization on shared memory systems

Scaling algorithms are not our concern here;
(computations are similar to repeated SpMxV; virtually any technique
used in parallelizing SpMxV can be used)

Algorithm I ONESIDED:

1: S < doubly stochastic scaling of A Split the rows among the threads with

2: for j =1 to n do a parallel for construct. No

3: cmatch(j) + NIL synchronization or conflict detection.

4: for i =1 to ndo .

51 Randenly pickicolumn: As.sumptlo.n ab.out the computer: one
according to probabilities Sjj write survives, in case of concurrent

6: cmatch(j) « i writes to the same memory location.

11 Bipartite Matching

Introduction, recent work, proposed heuristics

Parallelization on shared memory systems

Algorithm Ill: TWOSIDED:

We exploit the structure of the graph :

1: S <+ doubly stochastic scaling of A E K lar ed
2 E« 0) not kept as a regular edge set
3: for i =1 to ndo @ each connected component has at
4: Randomly pick a column j most one cycle
5: E_% EU{(i,))} @ if degree-one vertices are handled,
6: for j=1to ndo) we end up with cycles (any
7: Randomly p'_df 2l WL remaining (i, pick[i]) is valid along
8 E«+ EU{(ij)} a cycle)
9: Karp-Sipser on the edges E. .)
/ @ if one degree-one vertex is
With a standard Karp-Sipser, speedup matched, then at most one
is hard to achieve. degree-one vertex is created

12 Bipartite Matching

Introduction, recent work, proposed heuristics

TwOSIDED — appx guarantee and further notes

TWwWOSIDED obtains, asymptotically always surely, a matching of size

Conjecture: Let A be an n x n matrix with total support. Then,
0.866n. ’

@ There are experiments supporting the conjecture.

@ There is some theory too:
show: In a random 1-out graph (of n vertices on each

side), the expected maximum cardinality matching is 0.866n.

If we apply TWOSIDED to a square dense matrix (complete bipartite
graph) we obtain a random 1l-out bipartite graph.

@ Need to run the scaling algorithm for only a few iterations.

@ We assumed that the initial graph has perfect matchings (for
analysis). This seems to be enough to show appx guarantee.

o For practical purposes, we are ok on all bipartite graphs.

13 Bipartite Matching

Experimental results

Experiments |I: Matching quality

@ 743 matrices from UFL: 10 iterations of scaling is enough to obtain
the approximation in all but 37 matrices. They needed 10 more
scaling iterations.

:_k On these graphs can beat standard Karp-Sipser
heuristics dearly.

o Graphs without perfect matching: use sprand of Matlab
(Erdos-Rényi matrices); 10 iterations of scaling was again enough to
surpass the approximation guarantees.

14 Bipartite Matching

Experimental results

Experiments Il: Running time

@ Machine: two Intel Sandybridge-EP CPUs (each 8 cores) clocked at
2.00Ghz and 256GB of memory split across the two NUMA domains.

@ With 2, 4, 8, 16 threads on a few large matrices from UFL.

@ Using C and OpenMP parallelism; gcc 4.4.5 with the -02 optimization
flag; gcc atomic operations

@ (dynamic, 512) OpenMP scheduling policy is employed while running all
the algorithms except Karp-Sipser; it uses (guided).

@ speed up values: against a single thread execution (geometric mean of
15/20 executions).

15 Bipartite Matching

Experimental results

Experiments |l: Speed up

14
02 @4 O8 @16 02 @4 O8 @16

S8

H

26
4
2 2
0

(a) SCALESK (b) ONESIDEDMATCH

5
speedup
L

IS

Fig. 3. Speedups for SCALESK (left) and ONESIDEDMATCH (right) with a single scaling iteration.

14 14
02 @4 08 O16 02 @4 08 @16

12 12

10 10
e 2
28 58
k- @
26 &6

4 4

2 2

(a) KARPSIPSERMT (b) TWOSIDEDMATCH

Fig. 4. Speedups for KARPSIPSERMT (left) and TWOSIDEDMATCH (right) with a single sealing iteration.

16 Bipartite Matching

Experimental results

Experiments lll: Quality wrt the scaling iterations

Matching quality of ONESIDED

0.80

Matching Quality

The horizontal lines are at
0.632 and 0.866....

< o

° the approximation
Matching quality of TWOSIDED guarantees for the

0s0 heuristics (conjectured for

oss TWOSIDED).

o
®
&

o
®
2

Matching Quality

o
o
&8

0.80

17 Bipartite Matching

Concluding remarks

Concluding remarks

@ Two heuristics: doubly stochastic scaling + random choices.

@ One heuristic obtains 1 — 1/e appx solutions; other is claimed to
obtain 0.866 appx

@ One works on n edges, other 2n edges.

@ One has virtually no parallelization overhead, other runs a
specialized Karp-Sipser.

@ Speed-ups on unto 16 cores beyond 10 are realized on large bipartite
graphs

@ What about bipartite graphs corresponding to rectangular matrices?

@ Extensions to undirected graphs?

18 Bipartite Matching

Concluding remarks

Thank you!

http://perso.ens-1lyon.fr/bora.ucar/

19 Bipartite Matching

http://perso.ens-lyon.fr/bora.ucar/

Concluding remarks

The sequential algorithm (Ruiz’01)

1 DO 1, DO 1y,
2: for k =1,2,... until convergence do

Remind
3: D1<—diag(H"i(k)Hz)i:l,..,,m eminder

(K). i
r;\%: jth row at it. k
4 D« diag («/ch(k)Hg)j —1,...,n

5. AlHD p(+DAD, (KD

6. D, . p,0p,-1 lIx[lx = > Ixil

7. DY« D WD,

X[l = max{|>i[}

¢: any vector norm (usually oo- and 1-norms)
Convergence is achieved when

) < @ g {1000} <
max {[1= 6O} < < and max {j1—[lg®el} < e

20 Bipartite Matching

Concluding remarks

Experiments : Machine specs

e Machine: two Intel Sandybridge-EP CPUs (each 8 cores) clocked at
2.00Ghz and 256GB of memory split across the two NUMA domains.

@ CPUs: Each CPU has eight-cores (16 cores in total) and
HyperThreading is enabled.

@ Cores: Each core has its own 32kB L1 cache and 256kB L2 cache.
The 8 cores on a CPU share a 20MB L3 cache.

@ OS: 64-bit Debian with Linux 2.6.39-bpo.2-amd64.

@ Using C and OpenMP parallelism; gcc 4.4.5 with the -02
optimization flag

@ (dynamic,512) OpenMP scheduling policy is employed while
running all the algorithms except KarpSipser; it uses (guided).

o With 2, 4, 8, 16 threads.

o For atomic operations, gcc's built-in functions are used.

21 Bipartite Matching

	Main Talk
	Introduction, recent work, proposed heuristics
	Experimental results
	Concluding remarks

