
AREA-Oriented DAG-Scheduling:
A Preliminary Assessment

Arnold L. Rosenberg

Northeastern University

〈 rsnbrg@ccs.neu.edu 〉 or 〈 rsnbrg@cs.umass.edu 〉

Collaborators :

Gennaro Cordasco Univ. Naples 2

Rosario De Chiara Poste Italiane Res. Ctr.

Trilce Estrada Univ. New Mexico

Rajmohan Rajaraman Northeastern Univ.

Scott T. Roche Northeastern Univ.

Michela Taufer Univ. Delaware



An Emerging Challenge for HPC:

Dynamically Heterogeneous Computing Platforms

The constituent “workers” in many modern computing platforms

— e.g., clouds, or grids, desktop grids, volunteer computing projects

provide computing power at rates that cannot be known reliably a priori.



An Emerging Challenge for HPC:

Dynamically Heterogeneous Computing Platforms

The constituent “workers” in many modern computing platforms

provide computing power at rates that cannot be known reliably a priori.

In fact, the workers’ computing power can change

— at unexpected times



An Emerging Challenge for HPC:

Dynamically Heterogeneous Computing Platforms

The constituent “workers” in many modern computing platforms

provide computing power at rates that cannot be known reliably a priori.

In fact, the workers’ computing power can change

— at unexpected times

— in unexpected ways



An Emerging Challenge for HPC:

Dynamically Heterogeneous Computing Platforms

The constituent “workers” in many modern computing platforms

provide computing power at rates that cannot be known reliably a priori.

In fact, the workers’ computing power can change

— at unexpected times

— in unexpected ways

The platforms exhibit DYNAMIC HETEROGENEITY



Is HPC achievable for Dynamically Heterogeneous platforms?

When jobs have interchore dependencies (modeled as DAGs)—

how can we cope with the temporal unpredictability of workers?



Is HPC achievable for Dynamically Heterogeneous platforms?

“When jobs have interCHORE dependencies”

We use the granularity-neutral term “chore” to capture “jobs,” “tasks,” etc., of

arbitrary granularities.



Is HPC achievable for Dynamically Heterogeneous platforms?

When jobs have interchore dependencies (modeled as DAGs)—

how can we cope with the temporal unpredictability of workers?

Dynamic heterogeneity makes critical-path analysis impossible



Is HPC achievable for Dynamically Heterogeneous platforms?

When jobs have interchore dependencies (modeled as DAGs)—

how can we cope with the temporal unpredictability of workers?

Dynamic heterogeneity makes critical-path analysis impossible

One possible goal for coping is to

maximize the number of chores that are eligible for allocation

at every step of the computation



Is HPC achievable for Dynamically Heterogeneous platforms?

When jobs have interchore dependencies (modeled as DAGs)—

how can we cope with the temporal unpredictability of workers?

Dynamic heterogeneity makes critical-path analysis impossible

One possible goal for coping is to

maximize the number of chores that are eligible for allocation

at every step of the computation

THIS IS NOT ALWAYS ACHIEVABLE!



Is HPC achievable for Dynamically Heterogeneous platforms?

When jobs have interchore dependencies (modeled as DAGs)—

how can we cope with the temporal unpredictability of workers?

Dynamic heterogeneity makes critical-path analysis impossible

One possible goal for coping is to

maximize the number of chores that are eligible for allocation

at every step of the computation

THIS IS NOT ALWAYS ACHIEVABLE!

Many DAGs do not admit schedules that always maximize the number of eligible

chores.



Is HPC achievable for Dynamically Heterogeneous platforms?

When jobs have interchore dependencies (modeled as DAGs)—

how can we cope with the temporal unpredictability of workers?

Dynamic heterogeneity makes critical-path analysis impossible

One possible goal for coping is to

maximize the number of chores that are eligible for allocation

at every step of the computation

This is not always achievable!

Many DAGs do not admit schedules that always maximize the number of eligible

chores.

BUT WE CAN ALWAYS

MAXIMIZE THE AVERAGE NUMBER OF ELIGIBLE CHORES.



DAG-Schedules and Their AREAs

A (computation-) DAG G represents a computational job.



DAG-Schedules and Their AREAs

A (computation-) DAG G represents a computational job.

• Each node of G is a chore



DAG-Schedules and Their AREAs

A (computation-) DAG G represents a computational job.

• Each node of G is a chore

• Each arc of G is an interchore dependency



DAG-Schedules and Their AREAs

A (computation-) DAG G represents a computational job.

• Each node of G is a chore

• Each arc of G is an interchore dependency

Arc (u → v) means that chore v cannot be executed before chore u

Chore u is a parent of chore v in G



DAG-Schedules and Their AREAs

A (computation-) DAG G represents a computational job.

• Each node of G is a chore

• Each arc of G is an interchore dependency

A schedule Σ for G is a rule for selecting the next eligible chore to execute

(We measure time in an event-driven manner)



DAG-Schedules and Their AREAs

A (computation-) DAG G represents a computational job.

• Each node of G is a chore

• Each arc of G is an interchore dependency

A schedule Σ for G is a rule for selecting the next eligible chore to execute

Thus, Σ is a topological sort of G.



DAG-Schedules and Their AREAs

Chore v of DAG G is eligible (for execution) at step t

if all of v’s parents have been executed by step t



DAG-Schedules and Their AREAs

Chore v of DAG G is eligible (for execution) at step t

if all of v’s parents have been executed by step t

EΣ(t)
def

= the number of chores that are eligible at step t of Σ’s execution of G



DAG-Schedules and Their AREAs

Chore v of DAG G is eligible (for execution) at step t

if all of v’s parents have been executed by step t

EΣ(t)
def

= the number of chores that are eligible at step t of Σ’s execution of G

AREA(Σ)
def

= EΣ(0) + EΣ(1) + · · · + EΣ(NG)

—the unnormalized average number of eligible chores during Σ’s execution of G



DAG-Schedules and Their AREAs

Chore v of DAG G is eligible (for execution) at step t

if all of v’s parents have been executed by step t

EΣ(t)
def

= the number of chores that are eligible at step t of Σ’s execution of G

AREA(Σ)
def

= EΣ(0) + EΣ(1) + · · · + EΣ(NG)

—the unnormalized average number of eligible chores during Σ’s execution of G

(“AREA” invokes the analogy with Riemann sums as approximations of integrals)



DAG-Schedules and Their AREAs

Chore v of DAG G is eligible (for execution) at step t

if all of v’s parents have been executed by step t

EΣ(t)
def

= the number of chores that are eligible at step t of Σ’s execution of G

AREA(Σ)
def

= EΣ(0) + EΣ(1) + · · · + EΣ(NG)

≈≈≈≈≈≈≈≈≈

The (general version of the) AREA-MAX problem

GIVEN DAG G, FIND A SCHEDULE Σ WITH MAXIMAL AREA(Σ)

is NP-complete



DAG-Schedules and Their AREAs

Chore v of DAG G is eligible (for execution) at step t

if all of v’s parents have been executed by step t

EΣ(t)
def

= the number of chores that are eligible at step t of Σ’s execution of G

AREA(Σ)
def

= EΣ(0) + EΣ(1) + · · · + EΣ(NG)

≈≈≈≈≈≈≈≈≈

The (general version of the) AREA-MAX problem

GIVEN DAG G, FIND A SCHEDULE Σ WITH MAXIMAL AREA(Σ)

is NP-complete

—via reduction from Minimum Weighted Completion Time



Responding to the NP-completeness of AREA-MAX

1. Efficient AREA-maximizing schedules for many DAG-families

2. Efficient heuristics that “seem” to work well



Efficient AREA-maximizing schedules for many DAG-families

Expansive-Reductive (ER) DAGs

Convolutional DAGs

Compositions of ER, Convolutional DAGs

k

ωk ωkωkωkωkωk ωk ωk

ω2k ω3k ω4k ω5k ω6k ω7k1 ω



Efficient AREA-maximizing schedules for many DAG-families

LEGO-DAGs — a family of families of significant DAGs

Some bipartite building-block DAGs. (All arcs point upward.)

Composing building blocks (left) into a LEGO-DAG (right)



Efficient AREA-maximizing schedules for many DAG-families

A REALLY important special family: Series-Parallel DAGs (SP-DAGs)

• model multi-threaded computations

• lead to a good DAG-scheduling heuristic

The defining compositions that produce SP-DAGs



Efficient AREA-maximizing schedules for many DAG-families

A really important special family: Series-Parallel DAGs (SP-DAGs)

• model multi-threaded computations

• lead to a good DAG-scheduling heuristic

The defining compositions that produce SP-DAGs

One can find an AREA-maximizing schedule for any SP-DAG in quadratic time



Responding to the NP-completeness of AREA-MAX

1. Efficient AREA-maximizing schedules for many DAG-families

2. Efficient heuristics that “seem” to work well



Converting an arbitrary DAG to a SP-DAG

In quadratic time, one can convert any DAG G

to an SP-DAG σ(G) (via an “SP-ization”)

that has “roughly as much” parallelism as G

A sample SP-ization. (Note “additional” [synchronizing] chores)



The efficient AOSPD heuristic

—that “seems” to work well

The AOSPD DAG-scheduling heuristic

G is the DAG that you want to schedule with large AREA

If G is an SP-DAG

then use our AREA-maximizing SP-DAG scheduler

else

1. Transform G to the SP-DAG σ(G) using a prescribed SP-izer

2. Use our AREA-maximizing SP-DAG scheduler to schedule σ(G)

3. “Filter” the resulting schedule to eliminate the “additional” chores



EXPERIMENTAL SECTION



Assessing the A-O Paradigm’s Impact

— via the AOSPD heuristic

Our assessment performs the following tests:

• AOSPD’s schedules’ MAKESPANs vs. other “oblivous” schedulers’

• AOSPD’s schedules’ AREAs vs. other “oblivous” schedulers’

• AOSPD’s schedules’ AREAs vs. true AREA-Maximizing schedules

—for DAGs whose A-M schedules we know how to generate efficiently

• Test the hypothesis that larger AREA means smaller MAKESPAN

—Is there a positive correlation?



The Competing “Oblivious” Schedulers

• The FIFO scheduler:

Stores newly eligible chores in a fifo queue

—very lightweight, not very effective

• The Static-Greedy scheduler:

Stores newly eligible chores in a MAX-priority queue

ordered by outdegree

—much less lightweight, more effective

• The Dynamic-Greedy scheduler:

Stores newly eligible chores in a MAX-priority queue

ordered by yield (number of chores they would render eligible)

—rather heavyweight, quite effective (one-step optimal)



The Experimental Protocol

• The MAKESPAN experiment

Compare AOSPD’s performance to heuristic H’s via the ratio

T (H)÷ T (AO)

– Chore execution-times are distributed normally (positive half):

mean = 1; std-dev ∈ {0.1, 0.5}

– The number of available workers at step (ct) is distributed exponentially

with rate parameter λ:

P [ct = x] = λe−λx; λ ∈ {2−k|k ∈ [0..7]}

• The AREA experiment

Compare AOSPD’s performance to heuristic H’s via the ratio

AREA(AO)÷AREA(H)



The Experimental Protocol

• The MAKESPAN experiment

Compare AOSPD’s performance to heuristic H’s via the ratio

T (H)÷ T (AO)

– Chore execution-times are distributed normally (positive half):

mean = 1; std-dev ∈ {0.1, 0.5}

– The number of available workers at step (ct) is distributed exponentially

with rate parameter λ:

P [ct = x] = λe−λx; λ ∈ {2−k|k ∈ [0..7]}

• The AREA experiment

Compare AOSPD’s performance to heuristic H’s via the ratio

AREA(AO)÷AREA(H)

RECALL THAT

{

SMALLER MAKESPAN IS BETTER

BIGGER AREA IS BETTER



EXPERIMENTAL RESULTS



AO’s schedules’ MAKESPANs vs. Competitors’:

Expansive-Reductive (ER) DAGs



AO’s schedules’ MAKESPANs vs. Competitors’:

Cycle-composition DAGs



AO’s schedules’ MAKESPANs vs. Competitors’:

Clique-composition DAGs



AO’s schedules’ MAKESPANs vs. Competitors’:

LEGO-DAGs



AO’s schedules’ MAKESPANs vs. Competitors’:

Series-Parallel DAGs



AO’s schedules’ AREAs vs. Competitors’:

ER-DAGs, Cycle-composition DAGs,

Clique-composition DAGs, LEGO-DAGs

Mean ratios and ranges: AREA(AO)÷ AREA(H)



AO’s schedules’ AREAs vs. Competitors’:

Series-Parallel DAGs

Mean ratios and ranges: AREA(AO)÷ AREA(H)



Does larger AREA mean smaller MAKESPAN?

Correlating AREA and MAKESPAN for various DAG-familiess

• µ is the “arrival rate” of available processors

• PCC is the Pearson Product-Moment Correlation Coefficient

— measures correlation via both strength and direction



Comparing AREA-Maximization vs. AREA-Orientation

via schedule AREA

Comparing the AREAs of A-M and A-O schedules

—via the ratio AREA(AM)÷AREA(AO)



Comparing AREA-Maximization vs. AREA-Orientation

via schedule AREA

Comparing the AREAs of A-M and A-O schedules

—via the ratio AREA(AM)÷AREA(AO)

Observe that AREA(AM) ≤ 2×AREA(AO).

IS THIS ALWAYS TRUE?



Comparing AREA-Maximization vs. AREA-Orientation

via schedule MAKESPAN

Comparing the MAKESPANs of A-M and A-O schedules

—via the ratio T (AO)÷ T (AM)



The SIDNEY Scheduling Heuristic

• Based on the Sidney decomposition of DAGs

• Experiments show that Sidney’s schedules

– have AREAs significantly larger than other heuristics’

– have AREAs within 85% of optimal on randomly generated DAGs



The AREA-qualities of Sidney’s schedules.




