Distributed communication-aware load balancing with
TreeMatch in Charm-++

The 9th Scheduling for Large Scale Systems Workshop, Lyon, France

Emmanuel Jeannot Guillaume Mercier Francois Tessier
In collaboration with the Charm++ Team from the PPL (UIUC, IL) :
Esteban Meneses-Rojas, Gengbin Zheng, Sanjay Kale

July 1, 2014

- PPL PARALLEL
&Z 2l —) PROGRAMMING
LABORATORY

Francois Tessier TreeMatch in Charm++ 1/19

Introduction

Scalable execution of parallel applications

@ Number of cores is increasing
@ But memory per core is decreasing

@ Application will need to communicate even more than now

@ Process placement should take into account process affinity
@ Here: load balancing in Charm++ considering :

o CPU load
e process affinity (or other communicating objects)
e topology : network and intra-node

Francois Tessier TreeMatch in Charm++ 2/19

Charm-++

Features

@ Parallel object-oriented programming language based on C++

@ Programs are decomposed into a number of cooperating message-driven
objects called chares.

In general we have more chares than processing units
Chares are mapped to physical processors by an adaptive runtime system

Load balancers can be called to migrate chares

Charm++ is able to use MPI for the processes communications

Applications
LeanCP:Quantum | RocStar:Rocket
Molecular Dynamics | Simulation

NAMD: Classical
Molecular Dynamics

Changa: Cosmology
Simulation

F Tools
ParFUM: POSE: ” Faucets:

Unstructured Meshes PDES Job Scheduler

Projections:
L / Models Performance Analysis
MSA: Multiphased N Structured
Charisma Dagger (SDag) CharmDebug:
Debug Support

‘ Adaptive MPI

Shared Arrays
—

Charm++

Load-Balancing | Fault Tolerance

Converse: Abstraction of the Machine Layers

One of the Machine Layers: Cluster of Linux Workstations, IBM's Blue Gene\L, SGI's
Altix, Cray's XT3, Infiniband, Myrinet, Ethernet, and more

Charm+-+ Runtime System

Francois Tessier TreeMatch in Charm++ 3/19

Processes Placement

Why we should consider it
@ Many current and future parallel platforms have several levels of hierarchy

@ Application chares/processes do not exchange the same amount of data

(affinity)
@ The process placement policy may have impact on performance

o Cache hierarchy, memory bus, high-performance network...

Processor
Z

Processor

4/19

Francois Tessier TreeMatch in Charm++

@ The parallel machine topology

@ The application communication pattern

@ Map application processes to physical resources (cores) to reduce the
communication costs (NP-complete)

zeus16.map

Receiver rank

Francois Tessier 5/19

TreeMatch

The TreeMatch Algorithm

@ Algorithm and environment to compute processes placement based on
processes affinities and NUMA topology

@ Input :
e The communication pattern of the application
@ Preliminary execution with a monitored MPI implementation for static

placement
@ Dynamic recovery on iterative applications with Charm++

o A model (tree) of the underlying architecture : Hwloc can provide us this.
@ Output :

o A processes permutation o such that o; is the core number on which we
have to bind the process i

@ TreeMatch can only work on tree topologies. How to deal with 3d torus ?

<

Francois Tessier TreeMatch in Charm++ 6/19

Network placement

libtopomap

@ T. Hoefler and M. Snir, "Generic Topology Mapping Strategies for
Large-Scale Parallel Architectures" Proc. Int’l Conf. Supercomputing
(ICS), pp. 75-84, 2011.

@ Library that enables to map processes on various network topologies
@ Used in TreeMatchLB to consider the Blue Waters 3d torus

Figure: 3d Torus and a Cray Gemini router

Francois Tessier TreeMatch in Charm++ 7/19

Load balancing

Iterative applications

Migrate chares in order to optimize several criteria
Charm++ runtime system provides:

o chares load
o chares affinity
e etc...

@ Dealing with complex modern architectures

°
@ load balancer called at regular interval
°
°

@ Taking into account communications between elements

Some other communication-aware load-balacing algorithms

o [L. L. Pilla, et al. 2012] NUCOLB, shared memory machines
o [L. L. Pilla, et al. 2012] HwTopolLB

@ Some "built-in" Charm++ load balancers : RefineCommLB,
GreedyCommLB. . .

A

Francois Tessier TreeMatch in Charm++ 8/19

Several issues raised

@ Several issues raised!

@ Scalability of TreeMatch
@ How to deal with process mapping (user, core numbering)
o Intel Xeon 5550 : 0,2,4,6,1,3,5,7
o Intel Xeon 5550 : 0,1,2,3,4,5,6,7 (!!)
o AMD Interlagos : 0,1,2,3,4,5,6,7...,30,31
@ Need to find a relevant compromise between processes affinities and load
balancing

@ What about load balancing time?

The next slides will present our load balancer relying on TreeMatch and
libtopomap which performs a parallel and distributed communication-aware
load balancing.

Francois Tessier TreeMatch in Charm++ 9/19

Strategy for Charm++ - Network Placement

First step : minimize communication cost on network

o libtopomap reorders processes from a communicator
@ How to use it to reorder groups of processes (or chares) 7 Example :
groups of chares on nodes

o Charm++ uses MPI : full access to the MPI API
o New MPI communicator with MPI_Comm _split

Network (3d torus, tree, ...)

odes
@ New communicator

Francois Tessier TreeMatch in Charm++ 10/19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

@ 1° step : Remap groups of chares
on nodes according to the
communication on the network

Network (3d torus, hierarchical, ...)

6660 &0
Jo00zs0oaol

Groups of chares assigned to nodes

CPU Load

Francois Tessier TreeMatch in Charm++ 11/19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

@ 1° step : Remap groups of chares 3
on nodes according to the
communication on the network
o libtopomap (example : part of
3d Torus) o
8
16
8 J1s
12
Figure: Part of a 3d Torus attributed by

the resource manager

Francois Tessier TreeMatch in Charm++ 11/19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

@ 1° step : Remap groups of chares
on nodes according to the
communication on the network

Network (3d torus, hierarchical, ...)

o libtopomap (example : part of
3d Torus)

@ 2" step : Reorder chares inside
each node (distributed)

UolUo

Groups of chares assigned to cores

|

CPU Load

Francois Tessier TreeMatch in Charm++ 11/19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

@ 1° step : Remap groups of chares
on nodes according to the
communication on the network

o libtopomap (example : part of
3d Torus)

@ 2" step : Reorder chares inside
each node (distributed)

o Apply TreeMatch on the NUMA
topology and the chares
communication pattern

Chares

Francois Tessier TreeMatch in Charm++ 11/19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

@ 1° step : Remap groups of chares
on nodes according to the
communication on the network

o libtopomap (example : part of
3d Torus)

@ 2" step : Reorder chares inside
each node (distributed)

o Apply TreeMatch on the NUMA
topology and the chares
communication pattern

o Bind chares according to their
load (leveling on less loaded
chares)

Chares

Francois Tessier TreeMatch in Charm++ 11/19

Strategy for Charm++ - Intra-node placement

TreeMatch load balancer

@ 1° step : Remap groups of chares
on nodes according to the
communication on the network

o libtopomap (example : part of
3d Torus)

Network (3d torus, hierarchical, ...)

@ 2" step : Reorder chares inside
each node (distributed)

CPU Load

o Apply TreeMatch on the NUMA
communication pattern

o Bind chares according to their D D D D D D D D
chares) -

o Eadh medle eres et s e Groups of chares assigned to cores

topology and the chares |¢ é a 6 é é 0 6 |
load (leveling on less loaded
placement in parallel

Francois Tessier TreeMatch in Charm++ 11/19

commBench

@ Benchmark designed to simulate irregular communications

@ Experiments on 16 nodes with 32 cores on each (AMD Interlagos 6276) -
Blue Waters Cluster)

@ 1 MB messages - 100 iterations - 2 distant receivers for each chare

commBench on 512 cores
8192 elements — 1MB message size

me of one iteration in ms
50 100 150

ge ti

0

Avera(

DummyLB
RefineCommLB-
TreeMatchLB -

Francois Tessier TreeMatch in Charm++ 12/19

Results

commBench

@ 1 MB messages - 100 iterations - 2 distant receivers for each chare

@ TreeMatch applied on a chares communication matrix

Chares comm matrix - CommBench — 1 PlaFRIM node Chares comm matrix - CommBench — 1 PlaFRIM node

ef:ﬂr”F Hi i m

4000
4000

3000
3000

2000

Receiver rank

2000
Receiver rank

1000
1000

e Y

Sender rank Sender rank

Figure: (i) =0,8,4,5,12,1,9,6,14,2,3,13,7,10,11,15

Francois Tessier 13 /19

Results

kNeighbor

@ Benchmarks application designed to simulate regular intensive
communication between processes

@ Experiments on 8 nodes with 8 cores on each (Intel Xeon 5550) - PlaFRIM
Cluster
@ Particularly compared to RefineCommLB

o Takes into account load and communication
o Minimizes migrations

kNeighbor on 64 cores kNeighbor on 64 cores
128 elements - 1MB message size 256 elements - 1MB message size
00— 2000 1
w00
- JRECE
2 5007 2
£ 400 o £
F 2100
< 300 §
& 200 o D 500
1004
od od
3 3 3 3 3 3 3 3 3 3
z E z E 2 T E z E 4
£ F 0§ % - T
3 S] 2 £ 3 S [2 &
g H g H
a H a H

Francois Tessier 14 /19

kNeighbor

@ Experiments on 16 nodes with 8 cores on each (Intel Xeon 5550) -
PlaFRIM Cluster

@ 1 MB messages - 100 iterations - 7-Neighbor

Execution time versus chares by core
200

T T
DummyLB 0-7 ——
180 - TreeMatchLB

DummylB 0,2,4,6,1,3,5,7

160 -

140 +

120

100

iteration (in ms)

80 - 8 i

Average time for each 7-kNeighbor

60 - 8

40 L 1 |

Francois Tessier

What about the load balancing time?

@ Comparison between the sequential and the distributed versions of
TreeMatchLB

Time repartition for each step of the load balancing process

45 Initialization
: TM Sequential
4 TM Paralle| m—

35

2.5

Time in seconds

15

0.5

4096

16 /19

What about the load balancing time?

@ Comparison between the sequential and the distributed versions of
TreeMatchLB

@ The master node distributes the data to each node which will compute its
own chares placement. This data distribution can be done in parallel
(around 20% of improvments)

4096 Chares - reverse - Par

Master - Dm]m[” ‘ ‘ Hmﬂ:l ‘ T Process restillqtié
[1

Distribute
Calculate

1 |
,‘H:”“,

165.6 165.7 165.8 165.9 166 166.1 166.2
time

N o U A W N
T
I

Francois Tessier TreeMatch in Charm++ 16 /19

What about the load balancing time?

@ Linear trajectory while the number of chares is doubled
@ TreeMatchLB is slower than the other Greedy strategies

@ RefineCommLB which provides some good results for
communication-bound applications is not scalable (fails from 8192 chares)

Execution time of load balancing
strategies (running on 128 cores)

GreedyCommLB —+— 10000 F ' ' k|
GreedyLB
RefineCommLB
TreeMatchLB

Execution time (in ms)

1000 + <

100,

10

14

0.1 L L L L L
128 256 512 1024 2048 4096 8192

Number of chares

Figure: Load balancing time of the different strategies vs. number of chares for the
KNeighbor application.

Francois Tessier 17 /19

Future work and Conclusion

@ Topology is not flat!

@ Processes affinities are not homogeneous

@ Take into account these information to map chares give us improvement
@ Algorithm adapted to large problems (Distributed)

@ Published at IEEE Cluter 2013

v

Find a better way to gather the topology (Hwloc?)

Improve network part (BGQ routing ?)

°
°
@ Perform more large scale experiments
°

Evaluate our solution on other applications (CFD 7)

Francois Tessier TreeMatch in Charm++ 18 /19

The End

Thanks for your attention |
Any questions?

Francois Tessier TreeMatch in Charm++ 19/19

