
Optimizing Buffer Sizes for Pipeline Workflow Scheduling
with Setup Times

Anne Benoit, Jean-Marc Nicod and Veronika Rehn-Sonigo

ENS Lyon – FEMTO-ST institute Besançon, France

Introduction and Motivation

Overall objective: Mapping linear workflow applications, such as image
processing or assembly lines, onto parallel platforms

wn−1 wn

S2S1

δ1 δ2

w1 w2

Si

δi+1

wi

δi
Sn−1 S5

δn δn+1

Characteristics:

• The application can be expressed as an ordered sequence of steps (or
stages)

In this talk, we focus on the inner scheduling problem with setup costs

Veronika.Sonigo@femto-st.fr 2 / 15

Introduction and Motivation

Overall objective: Mapping linear workflow applications, such as image
processing or assembly lines, onto parallel platforms

wn−1 wn

S2S1

δ1 δ2

w1 w2

Si

δi+1

wi

δi
Sn−1 S5

δn δn+1

Characteristics:

• The application can be expressed as an ordered sequence of steps (or
stages)

Results for throughput maximization:
• Homogeneous platforms: dynamic program [Subhlok, Vondran 1995,1996]
• Heterogeneous communications: NP-hard [Benoit, Robert 2008]

In this talk, we focus on the inner scheduling problem with setup costs

Veronika.Sonigo@femto-st.fr 2 / 15

Introduction and Motivation

Overall objective: Mapping linear workflow applications, such as image
processing or assembly lines, onto parallel platforms

wn−1 wn

S2S1

δ1 δ2

w1 w2

Si

δi+1

wi

δi
Sn−1 S5

δn δn+1

Characteristics:

• The application can be expressed as an ordered sequence of steps (or
stages)

• If a processor is set to perform multiple stages, a setup cost is required
to switch between stages

In this talk, we focus on the inner scheduling problem with setup costs

Veronika.Sonigo@femto-st.fr 2 / 15

Introduction and Motivation

Overall objective: Mapping linear workflow applications, such as image
processing or assembly lines, onto parallel platforms

wn−1 wn

S2S1

δ1 δ2

w1 w2

Si

δi+1

wi

δi
Sn−1 S5

δn δn+1

Characteristics:

• The application can be expressed as an ordered sequence of steps (or
stages)

• If a processor is set to perform multiple stages, a setup cost is required
to switch between stages

In this talk, we focus on the inner scheduling problem with setup costs

Veronika.Sonigo@femto-st.fr 2 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5

st2 st3 st4

S1

st1

S2 S3 S4

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule

B1 B2 B3 B4 B5
S4

st2 st3 st4

S1

st1

S2 S3

⇒ to output 1 data set, we need 4 setups

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B2 B3 B4 B5

st2

S3S2S1

st4st1 st3

S4

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B2 B3 B4 B5

S4S2S1

st4st1 st3st2

S3

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B2 B3 B4 B5

S2 S3 S4

st3st2 st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

Veronika.Sonigo@femto-st.fr 3 / 15

Inner scheduling problem with setup costs

• A single processor is in charge of a linear chain of stages
• A set of buffers can hold in memory some data sets between two

consecutive data sets
• Decide in which order each data set and each stage has to be executed,

so that the throughput is maximized

Goal: find an optimal inner schedule
B1 B5B4B3B2

S2 S3

st3st2

S4

st4st1

S1

⇒ to output 1 data set, we need 4/5 setups in average

Veronika.Sonigo@femto-st.fr 3 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

S3 S4 S5 S6

st6st5st2 st3 st4st1

S1 S2

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

S2 S3 S4 S5 S6

st6st5st2 st3 st4st1

S1

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

S2 S3 S4 S5 S6

st6st5st2 st3 st4st1

S1

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

st1

S1 S2 S3 S4 S5 S6

st6st5st2 st3 st4

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

st1

S1 S2 S3 S4 S5 S6

st6st5st2 st3 st4

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

st4st1

S1 S2 S3 S4 S5 S6

st6st5st2 st3

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B7B1

2 4 64 16 8 4

B5B2 B3 B4 B6

st3 st4st1

S1 S2 S3 S4 S5 S6

st6st5st2

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B1

2 4 64 16 8 4

B5B2 B3 B4 B6 B7

st3 st4st1

S1 S2 S3 S4 S5 S6

st6st5st2

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B1

2 4 64 16 8 4

B5B2 B3 B4 B6 B7

st3 st4st1

S1 S2 S3 S4 S5 S6

st6st5st2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

B5

st4

S3 S4 S5

st1

S6

st6st5st2 st3

S1 S2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S2 S4 S5

st4st1

S6

st6st5st2

S1

st3

S3

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st2 st3 st4st1

S1 S2 S3 S4 S5 S6

st6st5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S5S1 S2

st6st5st2 st3 st4

S3

st1

S4 S6

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S4 S6

st4st1 st6st5st2

S1 S2

st3

S3 S5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S6

st6st5st2 st3 st4st1

S1 S2 S3 S4 S5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S6

st6st5st2 st3 st4st1

S1 S2 S3 S4 S5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S4 S6

st4st1

S1

st6st5st2

S2

st3

S3 S5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st5st2 st3 st4st1

S1 S2 S3 S4 S5 S6

st6

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st6st5st2 st3 st4st1

S1 S2 S3 S4 S5 S6

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S6

st6st5st2 st3 st4st1

S1 S2 S3 S4 S5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S3 S4 S5 S6

st6st5st2 st3 st4st1

S1 S2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st1

S2

st3

S3 S4 S5 S6

st6st2 st5st4

S1

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S3 S4 S5 S6

st6st5st3st2 st4st1

S1 S2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

B5

S6

st6st3 st5st2 st4st1

S1 S2 S3 S4 S5

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S3 S4 S5 S6

st6st5st3st2 st4st1

S1 S2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S2 S3 S4 S5 S6

st6st5st3st2 st4st1

S1

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st1

S2

st5

S3

st3

S4 S5 S6

st2 st6st4

S1

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S3 S4 S5 S6

st6st5st3st2 st4st1

S1 S2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

B5

S3 S4 S5 S6

st6st3 st5st2 st4st1

S1 S2

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

S2 S3 S4 S5 S6

st6st5st3st2 st4st1

S1

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st4

S6S1

st6

S2

st5

S3 S4

st3

S5

st2st1

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

B5

B1

B3 B4

2 4 64 16 8 4

B2 B6 B7

st4

S6S1

st6

S2

st5

S3 S4

st3

S5

st2st1

⇒ COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33
⇒ COST = 2/2 + 4/4 + 64/12 + 16/6 + 8/3 + 4/3 = 168/12 = 14

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Principle

• Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
• When setup costs are heterogeneous ?

Memory constraint:
n+1∑
i=1

δi × bi ≤ M

Cost function:

C =
n∑

i=1

sti
min(bi , bi+1)

Goal: Minimize the cost function, given the memory constraint
⇒ Decide about buffer allocation

Veronika.Sonigo@femto-st.fr 4 / 15

Case study

st stst
S1 S2 S3 S4

ST bb bB B

• One task has a larger setup cost than the others, denoted ST
• δi = 1, 1 ≤ i ≤ n + 1

Cost:

C =
st
b
× (n − 1) +

ST
B

Memory constraint:

M > (n − 1)b + 2B

• An efficient schedule can be found only if two consecutive buffers are
multiples [Benoit at al. 2012]:
B = α× b, where α is an integer (and α ≥ 1)

Bound: α 6
⌊

M−(n−1)
2

⌋
, if b = 1

• Replace B by α× b: b 6 M
(n−1)+2α

Veronika.Sonigo@femto-st.fr 5 / 15

Case study

Assumption: b can be rational: b = M
(n−1)+2α

• The cost can then be expressed as a function of α:

C(α) =
1
M

(
ST (n − 1 + 2α)

α
+ st(n − 1 + 2α)(n − 1)

)

• C′(α) = n−1
M

(
2st − ST

α2

)
• C′(α) is

I decreasing for

1 ≤ α ≤
√

ST
2st = αopt

I increasing for α ≥ αopt

• If αopt >
⌊

M−(n−1)
2

⌋
, then we let

αopt =
⌊

M−(n−1)
2

⌋
αopt

overhead

bαoptc dαopte

• Compute the optimal integer values of b and B for α = bαoptc and
α = dαopte, and we keep the choice of α that minimizes the cost

Veronika.Sonigo@femto-st.fr 6 / 15

Case study

Assumption: b can be rational: b = M
(n−1)+2α

• The cost can then be expressed as a function of α:

C(α) =
1
M

(
ST (n − 1 + 2α)

α
+ st(n − 1 + 2α)(n − 1)

)

• C′(α) = n−1
M

(
2st − ST

α2

)
• C′(α) is

I decreasing for

1 ≤ α ≤
√

ST
2st = αopt

I increasing for α ≥ αopt

• If αopt >
⌊

M−(n−1)
2

⌋
, then we let

αopt =
⌊

M−(n−1)
2

⌋
αoptbαoptc

overhead

dαopte

• Compute the optimal integer values of b and B for α = bαoptc and
α = dαopte, and we keep the choice of α that minimizes the cost

Veronika.Sonigo@femto-st.fr 6 / 15

All setup costs are non-decreasing

• Setup costs are non-decreasing: sti ≤ sti+1 bi ≤ bi+1

• Cost:

C =
n∑

i=1

sti
min(bi , bi+1)

=
n∑

i=1

sti
bi
,

• Buffer sizes are multiples two by two: bi =
∏i

k=1 αk , for 1 ≤ i ≤ n + 1
• b0 = 1, bi = αibi−1, for 1 ≤ i ≤ n + 1
• Let Pb

a =
∏b
`=a α`, and Pb

a = 1 for a > b.
• Due to memory constraint: α1 = M

δ1+
∑n+1

k=2 Pk
2 δk

• αi =

√
δi−1
sti−1

∑n
k=i stk Pn

k+1

Pn
i+1

∑n+1
k=i Pk

i+1δk

• αn =
√

δn−1
stn−1

stn
δn+δn+1

• αn+1 = 1 (no gain can be achieved by having a larger last buffer)

The rounding problem remains as the optimal value is rational

Veronika.Sonigo@femto-st.fr 7 / 15

General case

Difficulty: it is no longer possible to foresee the value of min(bi , bi+1)

Idea: Reuse of the theoretical results to compute the αk s:
• Sort setup costs and compute the ratios
• Heuristically decide how to choose integer values of buffer size

capacities, while not exceeding the total memory capacity

Design of 7 heuristics

The basic one: SameB

b =

⌊
M∑n+1
i=1 δi

⌋

Veronika.Sonigo@femto-st.fr 8 / 15

Heuristics - first series H1

1. Sort the setup values into a non-decreasing order, using a permutation
function π such that stπ(i) ≤ stπ(j) if π(i) < π(j), for 1 ≤ i, j ≤ n

2. Compute the αk -values backwards

3. Round the αk s: Flavours: Up, Down, Closest

4. Compute buffer sizes

5. Adapt buffer sizes

bi+1bi−1 bi bi+1 bi−1 bi bi+1bi−1 bi bi+1 bi−1 bi bi+1bi−1 bi bi+1 bi−1 bi

Veronika.Sonigo@femto-st.fr 9 / 15

Heuristics - first series H1

1. Sort the setup values into a non-decreasing order, using a permutation
function π such that stπ(i) ≤ stπ(j) if π(i) < π(j), for 1 ≤ i, j ≤ n

2. Compute the αk -values backwards

3. Round the αk s: Flavours: Up, Down, Closest

4. Compute buffer sizes

5. Adapt buffer sizes

bi+1bi−1 bi bi+1 bi−1 bi bi+1bi−1 bi bi+1 bi−1 bi bi+1bi−1 bi bi+1 bi−1 bi

Veronika.Sonigo@femto-st.fr 9 / 15

Heuristics - second series H2

Idea: Include the buffer adaption in the ratio computation

1. Steps 1-4 of H1

2. For each stage Si with sti = max(sti−1, sti , sti+1) (1 < i < n): force bi+1

to take the value of bi

3. Re-evaluate the αk ’s by recomputing α1

4. Flavours: UP, Down, Closest

Veronika.Sonigo@femto-st.fr 10 / 15

Results for non-decreasing setup costs

Mean cost over 100 applications

 0

 50000

 100000

 150000

 200000

 250000

 4000 6000 8000 10000 12000 14000

c
o

s
t

memory size

70 stages, step size 13, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

random values

 0

 5000

 10000

 15000

 20000

 4000 6000 8000 10000 12000 14000

c
o

s
t

memory size

70 stages, 6 types, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

6 setup cost types

70 stages

Veronika.Sonigo@femto-st.fr 11 / 15

Results for the general case (1)

Setup costs are often in the same order of magnitude, tend to zigzag

 0

 2

 4

 6

 8

 10

 12

 4000 6000 8000 10000 12000 14000

c
o

s
t

memory size

70 stages, step size 122

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

1 random application

 0

 50000

 100000

 150000

 200000

 4000 6000 8000 10000 12000 14000

c
o

s
t

memory size

70 stages, step size 122, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

Mean cost over 100 applications

70 stages

Veronika.Sonigo@femto-st.fr 12 / 15

Results for the general case (2)

Successive setup costs differ at least one order of magnitude or are the
same; peaks appear

 0

 0.5

 1

 1.5

 2

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

c
o

s
t

memory size

200 stages, 6 types

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

1 random application, 6 setup types

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

c
o

s
t

memory size

200 stages, 6 types, 100 runs

H1-Up
H2-Up

H1-Closest
H2-Closest

H1-Down
H2-Down

SameB

Mean cost over 100 applications

200 stages. Zoom on H2 and SameB

Veronika.Sonigo@femto-st.fr 13 / 15

Analyzing one solution

• Memory M = 77
• 6 stages

11 11 11 11 11 11 11

st6 = 16

S1 S2 S3 S4 S5 S6

available memory = ∅
memory 77 = 11× 7

st2 = 64st1 = 16 st3 = 2048 st4 = 1024 st5 = 256

SameB: 11 slots for each buffer⇒ COST HOM = 311.27

Down: COST DOWN = 373.33
UP and Closest : COST UP/CLOSEST = 277.33
Proportional buffers: COST PROP = 254.66
Optimal solution: COST OPT = 232

Veronika.Sonigo@femto-st.fr 14 / 15

Analyzing one solution

• Memory M = 77
• 6 stages

24 24

2 22

8

4 st6 = 16

S1 S2 S3 S4 S5 S6

available memory = 11
memory size = 77

st1 = 16 st2 = 64 st3 = 2048 st4 = 1024 st5 = 256

SameB: 11 slots for each buffer⇒ COST HOM = 311.27
Down: COST DOWN = 373.33

UP and Closest : COST UP/CLOSEST = 277.33
Proportional buffers: COST PROP = 254.66
Optimal solution: COST OPT = 232

Veronika.Sonigo@femto-st.fr 14 / 15

Analyzing one solution

• Memory M = 77
• 6 stages

3
6

24 24

12

3 3st6 = 16

S1 S2 S3 S4 S5 S6

available memory = 2
memory size = 77

st1 = 16 st2 = 64 st3 = 2048 st4 = 1024 st5 = 256

SameB: 11 slots for each buffer⇒ COST HOM = 311.27
Down: COST DOWN = 373.33
UP and Closest : COST UP/CLOSEST = 277.33

Proportional buffers: COST PROP = 254.66
Optimal solution: COST OPT = 232

Veronika.Sonigo@femto-st.fr 14 / 15

Analyzing one solution

• Memory M = 77
• 6 stages

3
6

24 24

12

4 4

S1 S2 S3 S4 S5 S6

available memory = ∅
memory size = 77

st1 = 16 st2 = 64 st3 = 2048 st4 = 1024 st5 = 256 st6 = 16

SameB: 11 slots for each buffer⇒ COST HOM = 311.27
Down: COST DOWN = 373.33
UP and Closest : COST UP/CLOSEST = 277.33
Proportional buffers: COST PROP = 254.66

Optimal solution: COST OPT = 232

Veronika.Sonigo@femto-st.fr 14 / 15

Analyzing one solution

• Memory M = 77
• 6 stages

3
6

18

6 6

18 18

S1 S2 S3 S4 S5 S6

available memory

SameB: 11 slots for each buffer⇒ COST HOM = 311.27
Down: COST DOWN = 373.33
UP and Closest : COST UP/CLOSEST = 277.33
Proportional buffers: COST PROP = 254.66
Optimal solution: COST OPT = 232

Veronika.Sonigo@femto-st.fr 14 / 15

Summary

Based on the optimal rational solution: proposition of an efficient integer
solution

• Importance of the rounding policy
• Applications with little variance:

SameB heuristic achieves comparable results to the Up and Closest
(resp. H1 and H2) heuristics

• Applications with at least one peak:
• SameB approach fails completely in performance
• H2 up to 3.3 times better

Veronika.Sonigo@femto-st.fr 15 / 15

	Introduction and related work
	Framework
	With two different setup costs
	Optimizing the buffer sizes with different setup costs
	General case

	Simulation results

