

Optimizing Buffer Sizes for Pipeline Workflow Scheduling with Setup Times

Anne Benoit, Jean-Marc Nicod and Veronika Rehn-Sonigo

ENS Lyon – FEMTO-ST institute Besançon, France

Overall objective: Mapping linear workflow applications, such as image processing or assembly lines, onto parallel platforms



Characteristics:

• The application can be expressed as an ordered sequence of steps (or *stages*)

Overall objective: Mapping linear workflow applications, such as image processing or assembly lines, onto parallel platforms



Characteristics:

• The application can be expressed as an ordered sequence of steps (or *stages*)

Results for throughput maximization:

- Homogeneous platforms: dynamic program [Subhlok, Vondran 1995, 1996]
- Heterogeneous communications: NP-hard [Benoit, Robert 2008]

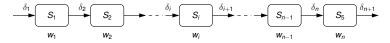
Overall objective: Mapping linear workflow applications, such as image processing or assembly lines, onto parallel platforms



Characteristics:

- The application can be expressed as an ordered sequence of steps (or *stages*)
- If a processor is set to perform multiple stages, a setup cost is required to switch between stages

Overall objective: Mapping linear workflow applications, such as image processing or assembly lines, onto parallel platforms

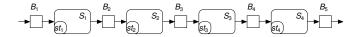


Characteristics:

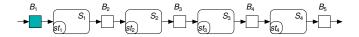
- The application can be expressed as an ordered sequence of steps (or *stages*)
- If a processor is set to perform multiple stages, a setup cost is required to switch between stages

In this talk, we focus on the inner scheduling problem with setup costs

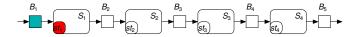
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



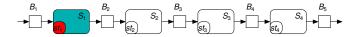
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



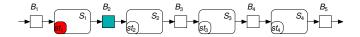
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



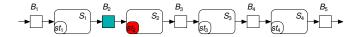
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



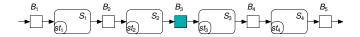
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



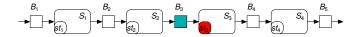
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized

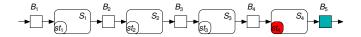


- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



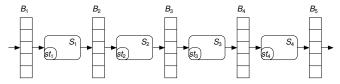
- · A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized

Goal: find an optimal inner schedule

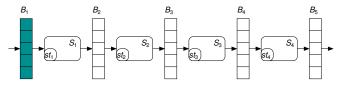


 \Rightarrow to output 1 data set, we need 4 setups

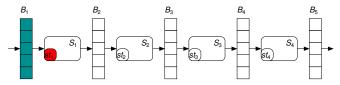
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



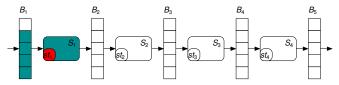
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



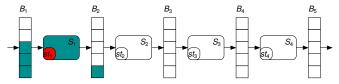
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



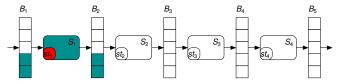
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



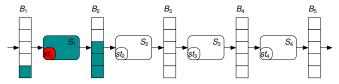
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



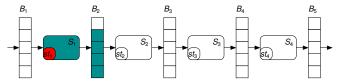
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



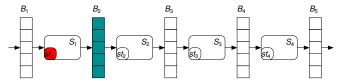
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



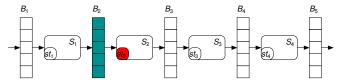
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



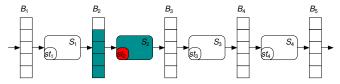
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



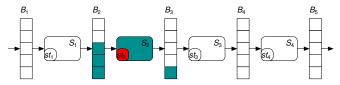
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



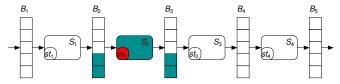
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



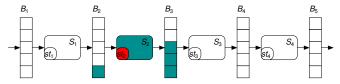
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



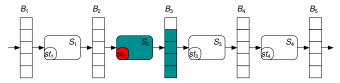
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



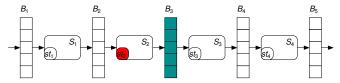
- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized

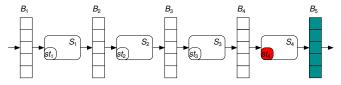


- A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized



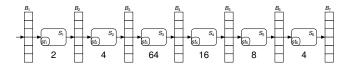
- · A single processor is in charge of a linear chain of stages
- A set of buffers can hold in memory some data sets between two consecutive data sets
- Decide in which order each data set and each stage has to be executed, so that the throughput is maximized

Goal: find an optimal inner schedule

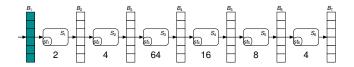


 \Rightarrow to output 1 data set, we need 4/5 setups in average

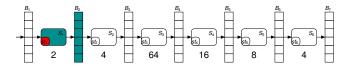
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



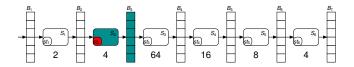
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



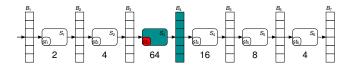
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



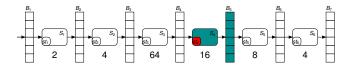
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



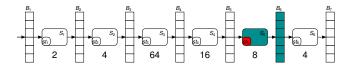
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



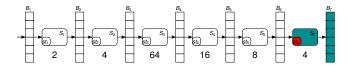
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



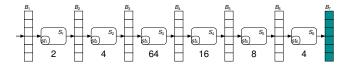
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



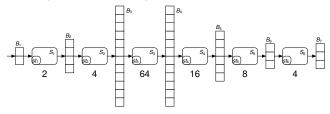
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



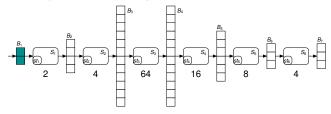
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



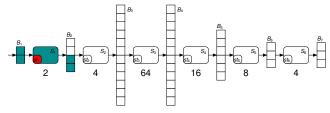
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



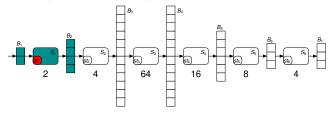
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



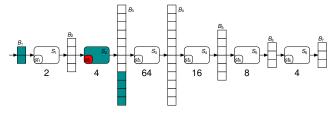
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



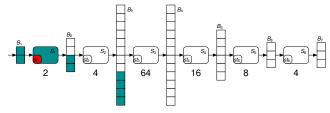
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



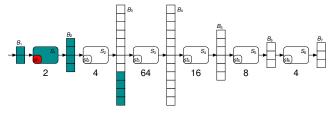
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



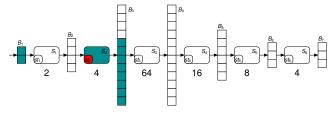
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



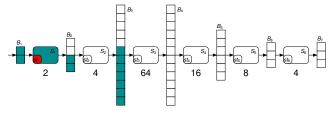
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



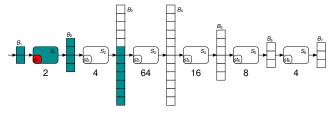
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



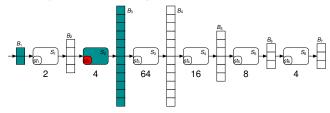
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



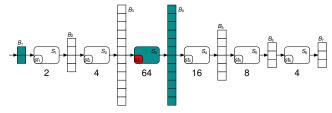
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



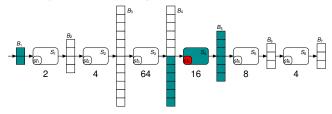
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



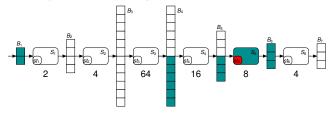
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



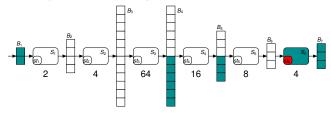
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



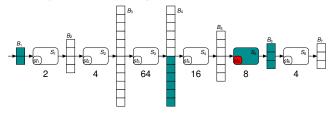
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



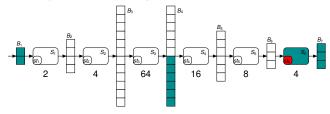
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



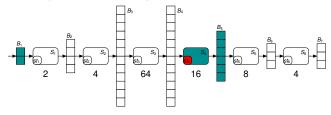
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



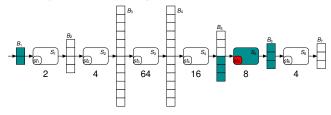
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



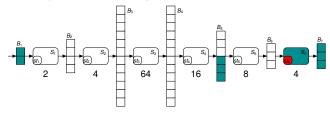
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



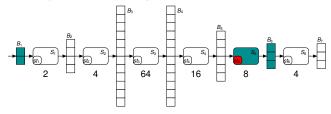
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



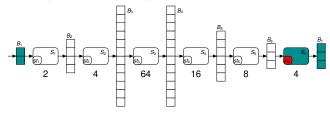
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



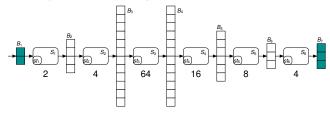
- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?



 $\Rightarrow COST HOM = 2/6 + 4/6 + 64/6 + 16/6 + 8/6 + 4/6 = 98/6 = 16.33$ $\Rightarrow COST = 2/2 + 4/4 + 64/12 + 16/6 + 8/3 + 4/3 = 168/12 = 14$

- Homogeneous setup costs: polynomial algorithm [Benoit et al. 2012]
- When setup costs are heterogeneous ?

Memory constraint:

$$\sum_{i=1}^{n+1} \delta_i \times b_i \leq M$$

Cost function:

$$C = \sum_{i=1}^{n} \frac{st_i}{\min(b_i, b_{i+1})}$$

Goal: Minimize the cost function, given the memory constraint \Rightarrow Decide about buffer allocation

Case study $\rightarrow b + \overline{s} + \overline{b} + \overline{s} + \overline{s} + \overline{b} + \overline{s} + \overline{b} + \overline{s} + b + \overline{s} + b$

- One task has a larger setup cost than the others, denoted ST
- $\delta_i = 1, 1 \le i \le n+1$

Cost:

Memory constraint:

- $C = \frac{st}{b} \times (n-1) + \frac{ST}{B} \qquad \qquad M \ge (n-1)b + 2B$
- An efficient schedule can be found only if two consecutive buffers are multiples [Benoit at al. 2012]:
 B = α × b where α is an integer (and α > 1)

$$B = \alpha \times b$$
, where α is an integer (and $\alpha \ge 1$)

Bound:
$$\alpha \leq \left\lfloor \frac{M-(n-1)}{2} \right\rfloor$$
, if $b = 1$

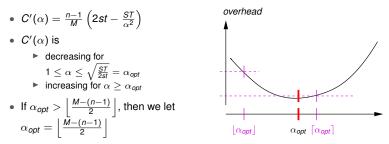
• Replace *B* by $\alpha \times b$: $b \leq \frac{M}{(n-1)+2\alpha}$

Case study

Assumption: *b* can be rational: $b = \frac{M}{(n-1)+2\alpha}$

• The cost can then be expressed as a function of α :

$$C(\alpha) = \frac{1}{M} \left(\frac{ST(n-1+2\alpha)}{\alpha} + st(n-1+2\alpha)(n-1) \right)$$



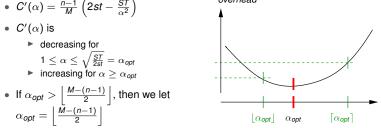
 Compute the optimal integer values of *b* and *B* for α = [α_{opt}] and α = [α_{opt}], and we keep the choice of α that minimizes the cost

Case study

Assumption: *b* can be rational: $b = \frac{M}{(n-1)+2\alpha}$

• The cost can then be expressed as a function of α :

$$C(\alpha) = \frac{1}{M} \left(\frac{ST(n-1+2\alpha)}{\alpha} + st(n-1+2\alpha)(n-1) \right)$$



 Compute the optimal integer values of *b* and *B* for α = [α_{opt}] and α = [α_{opt}], and we keep the choice of α that minimizes the cost

All setup costs are non-decreasing

- Setup costs are non-decreasing: st_i ≤ st_{i+1} → b_i ≤ b_{i+1}
- Cost:

$$C = \sum_{i=1}^n \frac{st_i}{\min(b_i, b_{i+1})} = \sum_{i=1}^n \frac{st_i}{b_i},$$

- Buffer sizes are multiples two by two: $b_i = \prod_{k=1}^{i} \alpha_k$, for $1 \le i \le n+1$
- $b_0 = 1$, $b_i = \alpha_i b_{i-1}$, for $1 \le i \le n+1$
- Let $P_a^b = \prod_{\ell=a}^b \alpha_\ell$, and $P_a^b = 1$ for a > b.
- Due to memory constraint: $\alpha_1 = \frac{M}{\delta_1 + \sum_{k=1}^{n-1} P_2^k \delta_k}$

•
$$\alpha_i = \sqrt{\frac{\delta_{i-1}}{st_{i-1}} \frac{\sum_{k=i}^n st_k P_{k+1}^n}{P_{i+1}^n \sum_{k=i}^{n+1} P_{i+1}^k \delta_k}}$$

•
$$\alpha_n = \sqrt{\frac{\delta_{n-1}}{st_{n-1}} \frac{st_n}{\delta_n + \delta_{n+1}}}$$

• $\alpha_{n+1} = 1$ (no gain can be achieved by having a larger last buffer)

The rounding problem remains as the optimal value is rational

Difficulty: it is no longer possible to foresee the value of $min(b_i, b_{i+1})$

Idea: Reuse of the theoretical results to compute the α_k s:

- · Sort setup costs and compute the ratios
- Heuristically decide how to choose integer values of buffer size capacities, while not exceeding the total memory capacity

Design of 7 heuristics

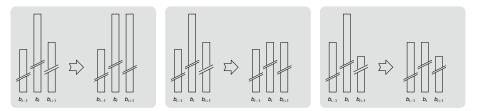
The basic one: SameB $b = \left\lfloor \frac{M}{\sum_{i=1}^{n+1} \delta_i} \right\rfloor$

Heuristics - first series H1

- 1. Sort the setup values into a non-decreasing order, using a permutation function π such that $st_{\pi(i)} \leq st_{\pi(j)}$ if $\pi(i) < \pi(j)$, for $1 \leq i, j \leq n$
- 2. Compute the α_k -values backwards
- 3. Round the α_k s: Flavours: Up, Down, Closest
- 4. Compute buffer sizes
- 5. Adapt buffer sizes

Heuristics - first series H1

- 1. Sort the setup values into a non-decreasing order, using a permutation function π such that $st_{\pi(i)} \leq st_{\pi(j)}$ if $\pi(i) < \pi(j)$, for $1 \leq i, j \leq n$
- 2. Compute the α_k -values backwards
- 3. Round the α_k s: Flavours: Up, Down, Closest
- 4. Compute buffer sizes
- 5. Adapt buffer sizes

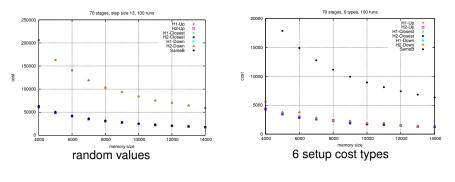


Idea: Include the buffer adaption in the ratio computation

- 1. Steps 1-4 of H1
- 2. For each stage S_i with $st_i = \max(st_{i-1}, st_i, st_{i+1})$ (1 < i < n): force b_{i+1} to take the value of b_i
- 3. Re-evaluate the α_k 's by recomputing α_1
- 4. Flavours: UP, Down, Closest

Results for non-decreasing setup costs

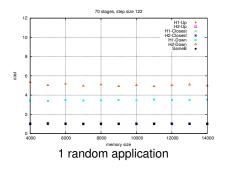
Mean cost over 100 applications

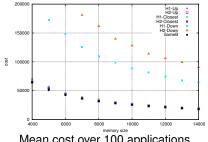


70 stages

Results for the general case (1)

Setup costs are often in the same order of magnitude, tend to zigzag





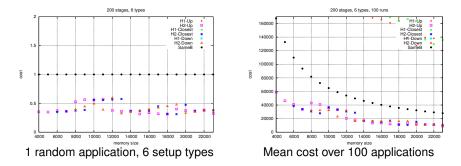
70 stages, step size 122, 100 runs

Mean cost over 100 applications

70 stages

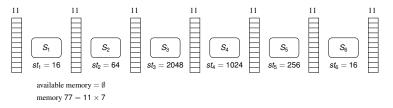
Results for the general case (2)

Successive setup costs differ at least one order of magnitude or are the same; peaks appear



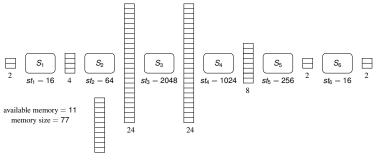
200 stages. Zoom on H2 and SameB

- Memory *M* = 77
- 6 stages



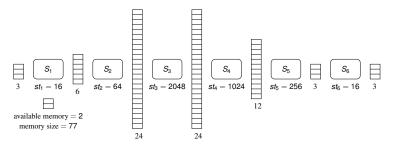
SameB: 11 slots for each buffer \Rightarrow COST HOM = 311.27

- Memory *M* = 77
- 6 stages



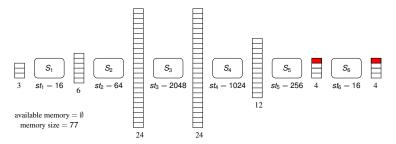
SameB: 11 slots for each buffer \Rightarrow COST HOM = 311.27 Down: COST DOWN = 373.33

- Memory *M* = 77
- 6 stages

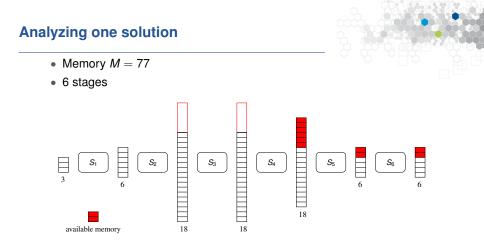


SameB: 11 slots for each buffer \Rightarrow COST HOM = 311.27 Down: COST DOWN = 373.33 UP and Closest : COST UP/CLOSEST = 277.33

- Memory *M* = 77
- 6 stages



SameB: 11 slots for each buffer \Rightarrow COST HOM = 311.27 Down: COST DOWN = 373.33 UP and Closest : COST UP/CLOSEST = 277.33 Proportional buffers: COST PROP = 254.66



SameB: 11 slots for each buffer \Rightarrow COST HOM = 311.27 Down: COST DOWN = 373.33 UP and Closest : COST UP/CLOSEST = 277.33 Proportional buffers: COST PROP = 254.66 Optimal solution: COST OPT = 232

Based on the optimal rational solution: proposition of an efficient integer solution

- Importance of the rounding policy
- Applications with little variance: SameB heuristic achieves comparable results to the Up and Closest (resp. H1 and H2) heuristics
- Applications with at least one peak:
 - SameB approach fails completely in performance
 - H2 up to 3.3 times better

