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Introduction

• Computational power

Tianhe-2 33, 863 TFlops

• Increase in the number of components

Tianhe-2 3, 120, 000 cores

• Large power consumption on powerful supercomputers

Tianhe-2 17MW
(Chad power consumption : ∼ 10MW )
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Introduction

Energy = Power × Execution_Time
Power = f(frequency3)

• Dynamic Voltage and Frequency scaling (DVFS)

• Reduce frequency :
→ Reduce power consumption
→ Reduce energy consumption

if the slowdown due to lower frequency does not dramatically
increase execution time
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Model

• MPI Applications

• Task graph
(task : computations between two communications)

• Dynamic Voltage and Frequency Scaling (DVFS)

• Discrete set of frequencies
• Frequency transition overhead

• Multi-node architecture

• Same frequency on cores within the same processor
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Frequency impact on execution time

• Slowing down one task may increase the whole execution time
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O�ine Scheduling : existing linear programming solution

[Rountree & al, SC'07]

• Precedence constraints

• P fi and Execution_Timefi of task Ti at
frequency f are known

• E =
∑
i

Pi × Execution_Timei

• A task can be divided into several portions,
each one can be executed at a speci�c
frequency

• δfi : fraction of time task Ti spends at
frequency f

• Execution_T ime_i =∑
i

δfi × Execution_T ime
f
i
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O�ine scheduling : Realistic environment

Architecture constraints are not considered :

• Cores within the same processor share the
same frequency

→ Parallel tasks one in processor must be
executed at the same frequency

• Frequency transition overhead cannot be
ignored

→ A task may be over before its execution
frequency is set
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Linear programming constraints

• E =
∑
i

Pi × Execution_Timei

• The time a frequency is set (c
fj
i )

1 Frequency transition overhead :

• The time between two frequency transitions
is larger than a threshold :
If fk is set then :

c
fj
i+1 − c

fk
i ≥ threshold

2 Same frequency over the cores

• The frequency switch is considered at the
processor level, not the task level
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Translating architecture constraints

• sTi : start time of Ti

• eTi : end time of Ti

execf11 =

{
cf22 − sT1 for cf11
eT1 − cf14 for cf14

execf21 =

{
cf33 − cf22 for cf22
0 for cf25
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Another formulation (unusable as well /)

• Generate all possible parallel tasks (at di�erent frequencies)

• Find the combination that provides best energy consumption

/ Several giga bytes of possibilites
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Principles

• Super tasks (processor level tasks) :

• Each message sent to or received
from a process outside the processor
creates a new super task

• Pst =
∑
Ti∈st

Pi

• Execution_timest : the execution
time of the task communicating with
the other processor

1 Solve the problem for super tasks using
a linear program

2 Apply the solution and rede�ne the
super tasks if necessary

3 Solve the problem with the new task
con�guration
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Energy gain example
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Figure : Possible energy gain
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Conclusion and current work

• Conclusion
• First attempt to o�ine scheduling

• Linear programming problem taking into account architecture

constraints
• Processor-level tasks for a feasible solution

• Current work

• Power and execution time prediction
• Handling frequency transition overhead by grouping super tasks
• Iterative solution
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