
Minimizing Energy Consumption of MPI Programs in
Realistic Environment

Nicolas Triquenaux1, Amina Guermouche1, Benoît Pradelle1,
Jean Christophe Beyler2,William Jalby1

1 Université de Versailles Saint-Quentin-en-Yvelines, Versailles, France
2 Intel Corporation

July 1st, 2014



Context O�ine scheduling considering architecture constraints Preliminary solution

Introduction

• Computational power

Tianhe-2 33, 863 TFlops

• Increase in the number of components

Tianhe-2 3, 120, 000 cores

• Large power consumption on powerful supercomputers

Tianhe-2 17MW
(Chad power consumption : ∼ 10MW )

2 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Introduction

Energy = Power × Execution_Time
Power = f(frequency3)

• Dynamic Voltage and Frequency scaling (DVFS)

• Reduce frequency :
→ Reduce power consumption
→ Reduce energy consumption

if the slowdown due to lower frequency does not dramatically
increase execution time

3 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Outline

1 Context
Model
Principles

2 O�ine scheduling considering architecture constraints
Basic principle
Unusable solution

3 Preliminary solution
Basic principles
Energy gain example

4 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Model

• MPI Applications

• Task graph
(task : computations between two communications)

• Dynamic Voltage and Frequency Scaling (DVFS)

• Discrete set of frequencies
• Frequency transition overhead

• Multi-node architecture

• Same frequency on cores within the same processor

5 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Frequency impact on execution time

• Slowing down one task may increase the whole execution time

T1

T2

T3

T4

T5

T6

0 1

T1

T2

T3

T4

T5

T6

0 1

6 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

O�ine Scheduling : existing linear programming solution

[Rountree & al, SC'07]

• Precedence constraints

• P fi and Execution_Timefi of task Ti at
frequency f are known

• E =
∑
i

Pi × Execution_Timei

• A task can be divided into several portions,
each one can be executed at a speci�c
frequency

• δfi : fraction of time task Ti spends at
frequency f

• Execution_T ime_i =∑
i

δfi × Execution_T ime
f
i

T1

T2

T3

T4

δ
f1
1

δ
f3
1

δ
f2
3

7 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

O�ine scheduling : Realistic environment

Architecture constraints are not considered :

• Cores within the same processor share the
same frequency

→ Parallel tasks one in processor must be
executed at the same frequency

• Frequency transition overhead cannot be
ignored

→ A task may be over before its execution
frequency is set

T1

T2

T3

T4

δ
f1
1

δ
f2
3

8 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Outline

1 Context
Model
Principles

2 O�ine scheduling considering architecture constraints
Basic principle
Unusable solution

3 Preliminary solution
Basic principles
Energy gain example

9 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Linear programming constraints

• E =
∑
i

Pi × Execution_Timei

• The time a frequency is set (c
fj
i )

1 Frequency transition overhead :

• The time between two frequency transitions
is larger than a threshold :
If fk is set then :

c
fj
i+1 − c

fk
i ≥ threshold

2 Same frequency over the cores

• The frequency switch is considered at the
processor level, not the task level

T1

T2

T3

T4

c
f1
1

c
f2
2

c
f3
3 = c

f1
4

c
f2
5

10 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Translating architecture constraints

• sTi : start time of Ti

• eTi : end time of Ti

execf11 =

{
cf22 − sT1 for cf11
eT1 − cf14 for cf14

execf21 =

{
cf33 − cf22 for cf22
0 for cf25

T1

T2

T3

T4

c
f1
1

c
f2
2

c
f3
3 = c

f1
4

c
f2
5

exec
fj
i =


min(eTi, c

fj+1

k+1 )−max(sTi, c
fj
k ) if


c
fj
k ≤ sTi ≤ c

fj+1

k+1

c
fj
k ≤ eTi ≤ c

fj+1

k+1

sTi ≤ c
fj
k and eTi ≥ c

fj+1

k+1

0 otherwise

11 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Translating architecture constraints

• sTi : start time of Ti

• eTi : end time of Ti

execf11 =

{
cf22 − sT1 for cf11
eT1 − cf14 for cf14

execf21 =

{
cf33 − cf22 for cf22
0 for cf25

T1

T2

T3

T4

c
f1
1

c
f2
2

c
f3
3 = c

f1
4

c
f2
5

exec
fj
i =


min(eTi, c

fj+1

k+1 )−max(sTi, c
fj
k ) if


c
fj
k ≤ sTi ≤ c

fj+1

k+1

c
fj
k ≤ eTi ≤ c

fj+1

k+1

sTi ≤ c
fj
k and eTi ≥ c

fj+1

k+1

0 otherwise

11 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Translating architecture constraints

• sTi : start time of Ti

• eTi : end time of Ti

execf11 =

{
cf22 − sT1 for cf11
eT1 − cf14 for cf14

execf21 =

{
cf33 − cf22 for cf22
0 for cf25

T1

T2

T3

T4

c
f1
1

c
f2
2

c
f3
3 = c

f1
4

c
f2
5

exec
fj
i =


min(eTi, c

fj+1

k+1 )−max(sTi, c
fj
k ) if


c
fj
k ≤ sTi ≤ c

fj+1

k+1

c
fj
k ≤ eTi ≤ c

fj+1

k+1

sTi ≤ c
fj
k and eTi ≥ c

fj+1

k+1

0 otherwise

11 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Another formulation (unusable as well /)

• Generate all possible parallel tasks (at di�erent frequencies)

• Find the combination that provides best energy consumption

/ Several giga bytes of possibilites

T1

T2

T3

T4

T1

T2

T3

T4

12 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Outline

1 Context
Model
Principles

2 O�ine scheduling considering architecture constraints
Basic principle
Unusable solution

3 Preliminary solution
Basic principles
Energy gain example

13 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Principles

• Super tasks (processor level tasks) :

• Each message sent to or received
from a process outside the processor
creates a new super task

• Pst =
∑
Ti∈st

Pi

• Execution_timest : the execution
time of the task communicating with
the other processor

1 Solve the problem for super tasks using
a linear program

2 Apply the solution and rede�ne the
super tasks if necessary

3 Solve the problem with the new task
con�guration

T1

T2

T3

T4

T5

T6

T7

ST1

ST2

14 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Energy gain example

IS
.C

.1
6

IS
.C

.3
2

IS
.C

.6
4

F
T
.C

.1
6

F
T
.C

.3
2

F
T
.C

.6
4

E
P

.C
.1

6

E
P

.C
.3

2

E
P

.C
.6

4

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

G
a
in

 i
n
 p

e
rc

e
n
ta

g
e

0
2
0

4
0

6
0

8
0

1
0
0

Prediction

Max Frequency 

Gain

E
n

e
rg

y
 i
n

 J
o

u
le

Figure : Possible energy gain

15 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Outline

1 Context
Model
Principles

2 O�ine scheduling considering architecture constraints
Basic principle
Unusable solution

3 Preliminary solution
Basic principles
Energy gain example

16 / 17



Context O�ine scheduling considering architecture constraints Preliminary solution

Conclusion and current work

• Conclusion
• First attempt to o�ine scheduling

• Linear programming problem taking into account architecture

constraints
• Processor-level tasks for a feasible solution

• Current work

• Power and execution time prediction
• Handling frequency transition overhead by grouping super tasks
• Iterative solution

17 / 17


	Context
	Model
	Principles

	Offline scheduling considering architecture constraints
	Basic principle
	Unusable solution

	Preliminary solution
	Basic principles
	Energy gain example


