

Prognostics-based Scheduling to Extend a Platform Useful Life under Service Constraint

Stéphane Chrétien*, <u>Nathalie Herr</u>**, Jean-Marc Nicod** and Christophe Varnier**

* Laboratoire de Mathématiques de Besançon (LMB) - UFC

** FEMTO-ST Institute – Besançon – France

July 2nd, 2014

Production scheduling

- Heterogeneous, independant, parallel machines
- Production based on a customer demand

Production scheduling

- Heterogeneous, independant, parallel machines
- Production based on a customer demand

Maintenance

- · Wear and tear on machines
- · Only one global maintenance allowed
- ⇒ Production horizon maximization before maintenance

- Heterogeneous, independant, parallel machines
- Production based on a customer demand

Maintenance

→ Production horizon maximization

Operating conditions

⇒ Consideration of many running profiles

Production scheduling

- Heterogeneous, independant, parallel machines
- Production based on a customer demand

Maintenance

⇒ Production horizon maximization

Operating conditions

- ⇒ Consideration of many running profiles
- ⇒ Taking real wear and tear into consideration (and not average life)

Prognostics and Health Management (PHM)

- Machine monitoring
- Remaining Useful Life (RUL) value depending on past and future usage

Prognostics and Health Management (PHM)

- Maintenance scheduling based on actual health state
- ☐ Haddad et al.: maintenance optimization under availability requirement ["A real options optimization model to meet availability requirements for offshore wind turbines", MFPT, Virginia, 2011]
- ☐ Vieira et al.: maintenance scheduling based on health limits

 ["New variable health threshold based on the life observed for improving the scheduled maintenance of a wind turbine", 2nd IFAC Workshop on Advanced Maintenance Engineering, 2012]
- Maintenance scheduling and mission reconfiguration
- □ Balaban et al.: rover maintenance optimization and mission duration extension

["A mobile robot testbed for prognostic-enabled autonomous decision making", Annual Conference of the Prognostics and Health Management Society, 2011]

Operating conditions

- Variable-speed machines: control of time used by jobs on machines
- Trick: single and multiple machine variable-speed scheduling ["Scheduling multiple variable-speed machines", Operations Research, 1994, 42, p.234-248]
- ☐ Dietl et al.: derating of cutting tools by reducing the cutting speed
 ["An operating strategy for high-availability multi-station transfer lines", Int. J. of Automation and Computing,
 2006, 2, p.125 130]
- Voltage/Frequency scaling
- Kimura et al.: energy consumption reducing without impacting performance
 - ["Empirical study on reducing energy of parallel programs using slack reclamation by dvfs in a power-scalable high performance cluster", IEEE Int. Conf. on Cluster Computing, Barcelona, 2006]
- - ["Energy-efficient processor design using multiple clock domains with dynamic voltage and frequency scaling", HPCA, Cambridge, 2002]

- Heterogeneous, independant, parallel machines
- Production based on a customer demand

Maintenance

→ Production horizon maximization

Operating conditions

- ⇒ Consideration of many running profiles
- ⇒ Taking real wear and tear into consideration (and not average life)

Prognostics and Health Management (PHM)

- ⇒ Use of prognostics results: RUL
- ⇒ Prognostics-based scheduling

Outline

- 1. State of the art
- Scheduling with running profiles in a discrete throughput domain Problem statement Complexity results Optimal approach Sub-optimal resolution Results Summary
- Scheduling with running profiles in a continuous throughput domain Problem statement Convex optimization Summary
- 4. Conclusion

Problem data

- m independant machines (M_i)
- n running profiles (N_i)
- PHM monitoring $\rightarrow (\rho_{i,j}, RUL_{i,j})$

Problem data

- m independant machines (M_i)
- n running profiles (N_i)
- PHM monitoring $\rightarrow (\rho_{i,j}, RUL_{i,j})$

Problem data

- m independant machines (M_i)
- n running profiles (N_i)
- PHM monitoring $\rightarrow (\rho_{i,j}, RUL_{i,j})$

Constraints

- No RUL overrun
- Mission fulfillment: constant demand in terms of throughput (σ)

Objective

- To fulfill total throughput requirements as long as possible $\mathsf{MAXK}(\sigma \mid \rho_{i,j} \mid RUL_{i,j})$
- Time discretization ($T = K \times \Delta T$, $1 \le k \le K$)

Problem data

- m independant machines (M_j)
- n running profiles (N_i)
- PHM monitoring $\rightarrow (\rho_{i,j}, RUL_{i,j})$

Constraints

- No RUL overrun
- Mission fulfillment: constant demand in terms of throughput (σ)

Objective

- To fulfill total throughput requirements as long as possible MAXK($\sigma \mid \rho_{i,j} \mid RUL_{i,j}$)
- Time discretization ($\mathcal{T} = K \times \Delta T$, $1 \le k \le K$)

Problem data

- m independant machines (M_i)
- n running profiles (N_i)
- PHM monitoring $\rightarrow (\rho_{i,j}, RUL_{i,j})$

Constraints

- No RUL overrun
- Mission fulfillment: constant demand in terms of throughput (σ)

Objective

- To fulfill total throughput requirements as long as possible MAXK(σ | ρ_{i,i} | RUL_{i,i})
- Time discretization ($\mathcal{T} = K \times \Delta T$, $1 \le k \le K$)

 $N_{1,3} = (\rho_{1,3} = 100 W, RUL_{1,3} = 2u.t.)$

Motivating example

2.2. Complexity results

Complexity map

	Homogeneous machines	Heterogeneous machines
	$ \rho_{i,j} = \rho $	$ ho_{i,j}= ho_{j}$
1 running profile	$MAXK(\sigma \rho \mathit{RUL}_{j})$	$MAXK(\sigma \rho_j \mathit{RUL}_j)$
	\Rightarrow polynomial	\Rightarrow NP-complete
	$ \rho_{i,j} = \rho_i $	$ ho_{i,j}= ho_{i,j}$
n running profiles	$MAXK(\sigma \rho_i \pmb{\mathit{RUL}}_{i,j})$	$MAXK(\sigma \rho_{i,j} \pmb{RUL}_{i,j})$
	⇒?	\Rightarrow NP-complete

2.3. Optimal approach

Binary Integer Linear Program (BILP)

 $a_{i,j,k} = 1$ if machine M_j is used with running profile N_i during period k, 0 otherwise

$$\begin{cases} \forall k, \ \forall j, \ \sum_{i=0}^{n-1} a_{i,j,k} \leq 1 & \text{(machines)} \\ \forall j, \ \sum_{i=0}^{n-1} \frac{\sum_{k=1}^{K} a_{i,j,k} \times \Delta T}{RUL_{i,j}} \leq 1 & \text{(RUL)} \\ \forall k, \ \sum_{j=1}^{m} \sum_{i=0}^{n-1} a_{i,j,k} \times \rho_{i,j} \geq \sigma & \text{(service)} \end{cases}$$

- · Binary search to find maximal value of k
- \Longrightarrow Limited to small instances: \approx 5 machines, 2 running profiles, 20 time periods

2.3. Optimal approach

Binary Integer Linear Program (BILP)

 $a_{i,j,k} = 1$ if machine M_j is used with running profile N_i during period k, 0 otherwise

$$\begin{cases} & \forall k, \ \forall j, \ \sum_{i=0}^{n-1} a_{i,j,k} \leq 1 \\ & \forall j, \ \sum_{i=0}^{n-1} \frac{\sum_{k=1}^K a_{i,j,k} \times \Delta T}{RUL_{i,j}} \leq 1 \\ & \forall k, \ \sum_{j=1}^m \sum_{i=0}^{n-1} a_{i,j,k} \times \rho_{i,j} \geq \sigma \end{cases} \qquad \text{(service)}$$

- Binary search to find maximal value of k
- \Longrightarrow Limited to small instances: ≈ 5 machines, 2 running profiles, 20 time periods

Basic heuristics

- ullet Assignment of machines to reach the demand σ as long as possible
- Selection of one running profile for each machine and each time period

☐ H-LRF: Largest RUL First

Enhancement: repair

- Revision of the schedules obtained with basic heuristics
- Use of available machines

THE HELDER HELDER

Basic heuristics

- Assignment of machines to reach the demand σ as long as possible
- Selection of one running profile for each machine and each time period

☐ H–LRF: Largest *RUL* First

□ H–HOF: Highest Output First

□ H–DP: Dynamic Programming based

Enhancement: repair

- Revision of the schedules obtained with basic heuristics
- Use of available machines

H-LRF-R, H-HOF-R, H-DP-R

H-DP schedule

M3 M3 M3 M3 N0 N0 N0 N0

H–DP schedule

H–DP-R Step 1

M3 M3 N0	M3 N0	M3 N0
----------	----------	----------

Remaining potential

H–DP schedule

H–DP-R Step 1

H–DP-R Step 2

M3 M3 N0	M3 N0	M3 N0
----------	----------	----------

Remaining potential

Remaining potential

Basic heuristics

- Assignment of machines to reach the demand σ as long as possible
- Selection of one running profile for each machine and each time period

☐ H-LRF: Largest RUL First

□ H–DP: Dynamic Programming based

Enhancement: repair

- Revision of the schedules obtained with basic heuristics
- Use of available machines
- □ H–LRF-R, H–HOF-R, H–DP-R

2.5. Results

Simulations

- Validation of heuristics on random problem instances
- Consideration of an increasing output $Q_{i,j} = \rho_{i,j} \times RUL_{i,j}$ with ρ such that:

$$Q_{0,j}>Q_{1,j}>\ldots>Q_{n-1,j}$$
 with $ho_{0,j}>
ho_{1,j}>\ldots>
ho_{n-1,j}$ and $RUL_{0,j}< RUL_{1,j}<\ldots< RUL_{n-1,j}$

• Constant demand $\sigma_k = \sigma$, with:

$$\sigma = \alpha \times \sum_{1 \le j \le m} \rho \max_j$$
 with $30\% \le \sigma \le 90\%$

Average value of 20 instances with same parameters values

2.5. Results

Comparison to an upper bound(n=5, m=25)

2.5. Results

Comparison to an upper bound(n=5, m=25)

Load (%)

2.6. Summary

- Scheduling using prognostics results (RUL)
- Choose of running profiles in a discrete throughput domain
- · Extension of a platform operational time
- Efficient sub-optimal heuristics (6% from upper bound)

[MIM2013], [PHM2014*], [CASE2014]

→ Application on wind turbines, cutting tools

Second adressed problem

- Choose of running profiles in a continuous throughput domain
- \Rightarrow Application on fuel cells
 - Continuous use of machines

* Best Paper Award

2.6. Summary

- Scheduling using prognostics results (RUL)
- Choose of running profiles in a discrete throughput domain
- Extension of a platform operational time
- Efficient sub-optimal heuristics (6% from upper bound)

[MIM2013], [PHM2014*], [CASE2014]

→ Application on wind turbines, cutting tools

Second adressed problem

- Choose of running profiles in a continuous throughput domain
- Application on fuel cells
 - · Continuous use of machines

* Best Paper Award

Outline

- 1. State of the art
- Scheduling with running profiles in a discrete throughput domain Problem statement Complexity results Optimal approach Sub-optimal resolution Results Summary
- Scheduling with running profiles in a continuous throughput domain Problem statement Convex optimization Summary
- 4. Conclusion

Problem data

- m independant machines (M_j)
- Running profiles in a continuous throughput domain $(\rho \min_j \le \rho_j(t) \le \rho \max_j(t))$
- PHM monitoring $\rightarrow (\rho_j(t), RUL_j(\rho_j(t), t))$
- Constant minimal throughput (ρmin_j)
- Maximal throughput decreasing with time $(\rho max_i(t))$

- m independant machines (M_j)
- Running profiles in a continuous throughput domain $(\rho min_j \le \rho_j(t) \le \rho max_j(t))$
- PHM monitoring $\rightarrow (\rho_i(t), RUL_i(\rho_i(t), t))$
- Constant minimal throughput (ρmin_i)
- Maximal throughput decreasing with time $(\rho max_i(t))$

Problem data

- m independant machines (M_j)
- Running profiles in a continuous throughput domain $(\rho min_j \le \rho_j(t) \le \rho max_j(t))$
- PHM monitoring $\rightarrow (\rho_j(t), RUL_j(\rho_j(t), t))$
- Constant minimal throughput (ρmin_i)
- Maximal throughput decreasing with time (ρmax_i(t))

Constraints

- No RUL overrun
- Mission fulfillment: constant demand in terms of throughput (σ)
- · Avoid temporary machine shutdowns

Objective

 To fulfill total throughput requirements as long as possible MAXK(σ | ρ_i(t) | RUL_i(ρ_i(t), t))

Problem data

- m independant machines (M_j)
- Running profiles in a continuous throughput domain $(\rho min_j \le \rho_j(t) \le \rho max_j(t))$
- PHM monitoring $\rightarrow (\rho_j(t), RUL_j(\rho_j(t), t))$
- Constant minimal throughput (ρmin_i)
- Maximal throughput decreasing with time $(\rho max_i(t))$

Constraints

- No RUL overrun
- Mission fulfillment: constant demand in terms of throughput (σ)
- · Avoid temporary machine shutdowns

Objective

 To fulfill total throughput requirements as long as possible MAXK(σ | ρ_i(t) | RUL_i(ρ_i(t), t))

3.2. Convex optimization - Model

Problem statement

Machine throughput

Model

 $\label{eq:fj} \mathbf{f_j(t)} = \rho_{\mathbf{j}}(\mathbf{t}) \text{ if the machine is used} \\ \text{during the period t},$

= 0 otherwise

$$\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$$

$$F = \begin{pmatrix} f_2(0) \\ \vdots \\ f_m(0) \\ \vdots \\ f_1(T) \\ \vdots \\ \vdots \\ f_n(T) \end{pmatrix}$$

Solution: schedule

3.2. Convex optimization - Model

Problem statement

Machine throughput

Model

 $\label{eq:fj} \mathbf{f_j(t)} = \rho_{\mathbf{j}}(\mathbf{t}) \text{ if the machine is used} \\ \text{during the period } \mathbf{t},$

= 0 otherwise

$$\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$$

$$F = \begin{cases} f_{2}(0) \\ \vdots \\ f_{m}(0) \\ \vdots \\ f_{1}(T) \\ \vdots \\ f_{m}(T) \end{cases}$$

Solution: schedule

3.2. Convex optimization - Model

Problem statement

- Continuous running profiles
- · Constant minimal throughput
- Maximal throughput decreasing with time
- No RUL overrun
- Mission fulfillment

Model

$$\mathbf{f_j(t)} = \mathbf{f_{1,j}(t)} + \mathbf{f_{2,j}(t)}$$

 $\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$

$$\mathbf{f_j(t)} \geq \mathbf{fmin_j}$$

 $\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$

$$\mathbf{f_j(t)} \leq \mathbf{fmax_j(t)}$$

 $\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$

$${\sum}_{t=0}^T \Gamma(f_j(t)) \leq 1$$

$$\forall j = 1, \ldots, m$$

$$\sum\nolimits_{j=1}^{m}f_{j}(t)\geq\sigma(t)$$

$$\forall j = 1, \ldots, m \text{ and } \forall t = 0, \ldots, T$$

3.2. Convex optimization - Constraints

Model

$$f_j(t) = f_{1,j}(t) + f_{2,j}(t)$$

 $f_j(t) \ge fmin_j$
 $\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$

$$\mathbf{f_j(t)} \leq \mathbf{fmax_j(t)}$$

 $\forall j = 1, \dots, m \text{ and } \forall t = 0, \dots, T$

$$\sum\nolimits_{t=0}^{T} \Gamma(f_j(t)) \leq 1$$

$$\forall i = 1, \dots, m$$

$$\sum\nolimits_{j=1}^m f_j(t) \geq \sigma(t)$$

 $\forall j = 1, \ldots, m \text{ and } \forall t = 0, \ldots, T$

Constraint functions

$$\psi_{1,j}(\mathsf{F})_\mathsf{t} = \mathsf{f}_{1,j}(\mathsf{t})$$
 $\psi_{2,j}(\mathsf{F})_\mathsf{t} = \mathsf{f}_{2,j}(\mathsf{t})$

$$\forall j=1,\ldots,m$$

$$\psi_{3,j}(\mathbf{F})_{t} = \mathbf{fmax}_{j}(t) - \mathbf{f}_{j}(t)$$

 $\forall j = 1, \dots, m$

$$\psi_{4,j}(\mathbf{F})_{t} = \mathbf{1} - \sum_{t=0}^{T} \Gamma(\mathbf{f}_{j}(t))$$

$$\forall j=1,\ldots,m$$

with
$$\Gamma(f_j(t)) = \frac{a_j \Delta T}{f_j(t) - fmax_j(0)}$$

$$\psi_0(\mathbf{F})_{\mathbf{t}} = \sum_{i=1}^{m} \mathbf{f}_{i}(\mathbf{t}) - \sigma(\mathbf{t})$$

3.2. Convex optimization - Scheme

Objective function

$$\phi(F) = \sum_{j=1}^{m} \lambda_{1,j} \|\Delta f_{1,j}\|_{1} + \lambda_{2,j} \|\Delta f_{2,j}\|_{\infty} + \lambda_{2',j} \|\Delta^{2} f_{2,j}\|_{1}$$

subject to the previous constraints ψ_0 and $\psi_{K,j}(F) \ \forall \ K=1,\ldots,4$

- \(\ell_1 \) penalization approach (convex functions)
- Control of the number of jumps (f₁), of the slope and of the number of breakpoints (f₂)

3.2. Convex optimization - Scheme

Objective function

$$\phi(F) = \sum_{j=1}^{m} \lambda_{1,j} \|\Delta f_{1,j}\|_{1} + \lambda_{2,j} \|\Delta f_{2,j}\|_{\infty} + \lambda_{2',j} \|\Delta^{2} f_{2,j}\|_{1}$$

subject to the previous constraints ψ_0 and $\psi_{K,j}(F) \ \forall \ K=1,\ldots,4$

Bregman-proximal method

- ⇒ Minimization of the objective function
- Assures the positivity for each constraint function: $\psi_0(F) \ge 0$ and $\psi_{K,j}(F) \ge 0 \ \forall K = 1, ..., 4$ and $\forall j = 1, ..., m$

Lagrange function

$$L(F, u) = ||F||_1 + \phi(F) + \sum_{j=1}^{m} u_j \psi_{4,j}(F)$$

such that $u \leq 0$, $\psi_0(F) \geq 0$ and $\psi_{K,j}(F) \geq 0 \ \forall K = 1, \ldots, 3$

3.2. Convex optimization - Scheme

Objective function

$$\phi(F) = \sum_{j=1}^{m} \lambda_{1,j} \|\Delta f_{1,j}\|_{1} + \lambda_{2,j} \|\Delta f_{2,j}\|_{\infty} + \lambda_{2',j} \|\Delta^{2} f_{2,j}\|_{1}$$

subject to the previous constraints ψ_0 and $\psi_{K,j}(F) \ \forall \ K=1,\ldots,4$

Bregman-proximal method

- → Minimization of the objective function
- Assures the positivity for each constraint function: $\psi_0(F) \ge 0$ and $\psi_{K,i}(F) \ge 0 \ \forall K = 1, ..., 4$ and $\forall i = 1, ..., m$

Lagrange function

$$L(F, u) = ||F||_1 + \phi(F) + \sum_{j=1}^m u_j \psi_{4,j}(F)$$

such that $u \leq 0, \, \psi_0(F) \geq 0$ and $\psi_{K,j}(F) \geq 0 \; \; \forall \, K=1,\ldots,3$

3.2. Convex optimization

Coupled ADMM Bregman-proximal scheme

(ADMM: Alternating Direction Method of Multipliers)

Primal step:

$$\begin{split} F^{(l+1)} &= \underset{F \in \mathbb{R}^{2m(T+1)}}{\operatorname{argmin}} \left(L(F, u^{(l)}) + \lambda \left(D_h(\psi_0(F^{(l)}), \psi_0(F)) \right) \right. \\ &+ < V'^{(l)}, F - F' > + < V''^{(l)}, F - F'' > + < V''^{(l)}, F - F''' > \\ &+ \frac{\rho}{2} \|F - F'\|_F^2 + \frac{\rho}{2} \|F - F''\|_F^2 + \frac{\rho}{2} \|F - F'''\|_F^2 \right) \\ F'^{(l+1)} &= \underset{F' \in \mathbb{R}^{2m(T+1)}}{\operatorname{argmin}} \left(\lambda \left(\sum_{j=1}^m D_h(\psi_{1,j}(F'^{(l)}), \psi_{1,j}(F')) \right) + < V'^{(l)}, F - F' > + \frac{\rho}{2} \|F - F'\|_F^2 \right) \\ F'''^{(l+1)} &= \underset{F'' \in \mathbb{R}^{2m(T+1)}}{\operatorname{argmin}} \left(\lambda \left(\sum_{j=1}^m D_h(\psi_{2,j}(F''^{(l)}), \psi_{2,j}(F'')) \right) + < V''^{(l)}, F - F'' > + \frac{\rho}{2} \|F - F''\|_F^2 \right) \\ F'''^{(l+1)} &= \underset{F''' \in \mathbb{R}^{2m(T+1)}}{\operatorname{argmin}} \left(\lambda \left(\sum_{j=1}^m D_h(\psi_{3,j}(F'''^{(l)}), \psi_{3,j}(F''')) \right) + < V'''^{(l)}, F - F''' > + \frac{\rho}{2} \|F - F'''\|_F^2 \right) \end{split}$$

3.2. Convex optimization

Coupled ADMM Bregman-proximal scheme

(ADMM: Alternating Direction Method of Multipliers)

Primal step: $F^{(l+1)}$, $F'^{(l+1)}$, $F''^{(l+1)}$, $F'''^{(l+1)}$

Dual step:

$$\begin{split} u^{(l+1)} &= \underset{u}{\operatorname{argmax}} \left(L(F^{(l+1)}, u) + \lambda D_h(u^{(l)}, u) \right) \\ V'^{(l+1)} &= V'^{(l)} + F^{(l+1)} - F'^{(l+1)} \\ V''^{(l+1)} &= V''^{(l)} + F^{(l+1)} - F''^{(l+1)} \\ V'''^{(l+1)} &= V'''^{(l)} + F^{(l+1)} - F'''^{(l+1)} \end{split}$$

3.2. Convex optimization

Coupled ADMM Bregman-proximal scheme

(ADMM: Alternating Direction Method of Multipliers)

Primal step: $F^{(l+1)}$, $F'^{(l+1)}$, $F''^{(l+1)}$, $F'''^{(l+1)}$

Dual step:

$$\begin{split} u^{(l+1)} &= \underset{u}{\operatorname{argmax}} \left(L(F^{(l+1)}, u) + \lambda D_h(u^{(l)}, u) \right) \\ V'^{(l+1)} &= V'^{(l)} + F^{(l+1)} - F'^{(l+1)} \\ V''^{(l+1)} &= V''^{(l)} + F^{(l+1)} - F''^{(l+1)} \\ V'''^{(l+1)} &= V'''^{(l)} + F^{(l+1)} - F'''^{(l+1)} \end{split}$$

Work in progress...

3.3. Summary

Addressed problem: maximizing the production horizon under service constraint

- Scheduling using prognostics results (RUL)
- Choose of running profiles in a continuous throughput domain
- Extension of a platform operational time
- → Convergence results of the method...
- ⇒ Experiment results...

4. Conclusion

- Scheduling using prognostics results (RUL)
- Choose of running profiles in a discrete or a continuous domain
- Extension of a platform operational time
- · Off-line scheduling
- Constant and variable demand

Future work

- Introduction of storage in the case of variable demand
- Hybrid power production including storage devices

4. Conclusion

- Scheduling using prognostics results (RUL)
- Choose of running profiles in a discrete or a continuous domain
- Extension of a platform operational time
- · Off-line scheduling
- Constant and variable demand

Future work

- Introduction of storage in the case of variable demand
- Hybrid power production including storage devices

Thank you for your attention

Any questions?

