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Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

⇒

P|prec , cij |Cmax

Traditional and general problem
Strong NP-hard

⇒ Heuristics, most popular is list scheduling
But here,
⇒ Optimal solver, based on state space search
⇒ Today solver algorithms that work with limited memory
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Scheduling problem

Finding start time and processor allocation for every task

⇒

ti : start time of task i
pi : processor of task i

Given by task graph G = (V ,E )

Li : execution time of task i
weight of node

γij : remote communication cost between tasks i and j
weight of edge
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Constraints

⇒

Processor constraint

pi = pj ⇒
{

ti + Li ≤ tj
or tj + Lj ≤ ti

Precedence constraint
For each edge eij of E

tj ≥ ti + Li +

{
0 if pi = pj
γij otherwise
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Optimal solution techniques

Mixed Integer Linear Programming – Venugopalan, Sinnen, IEEE
TPDS 2014

State Space Search

Exhaustive search through all possible solutions
Every state (node) s represents partial solution
Combinatorial problems ⇒ search tree
Deeper nodes are more complete solutions

Search techniques

A* – great performance, but memory problem !
IDA*, Branch and Bound – Limited memory search techniques
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Solution space for scheduling problem

Essentially: list scheduling, trying out all task orders and all processor
allocations

State: partial schedule
Initial state: empty schedule
Cost function f (s): underestimate of makespan for complete schedule
based on s

Expansion
Given state s, let free(s) be free tasks

for all i ∈ free(s) do
for all P ∈ P do

Create new state: i scheduled on P as early as possible
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Solution tree

Task graph on two processors
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Cost function f (s)

Three components
Perfect load balance plus current idle time

fidle−time(s) =
∑

i∈V Li + idle(s)
|P|

Max (start time of scheduled tasks plus their bottom level)

fbl (s) = max
i∈s
{ti + blw (i)}

Unscheduled tasks: Data-Ready-Time plus their bottom levels

fDRT (s) = max
i∈free(s)

{tdr (i) + blw (i)}

Complete f (s) function:

f (s) = max{fidle−time(s), fbl (s), fDRT (s)}
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Branch and Bound

Branch and Bound – can mean many things
Usual meaning: DFS Branch and Bound

B & B
B ← upperBound
DFS on state space (depth until f (s) ≥ B):
if complete solution sc found & f (sc) < B then

B ← f (sc)

Memory required is O(|V |P)

Benefits from tight upper bounds for initial B
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IDA*

Iterative Deepening A* (IDA*)
Uses threshold

Depth limited by threshold: if f (s) > threshold do not descend further

IDA*
T ← lowerBound
while no complete solution do
DFS on state space (depth until f (s) > T )
if complete solution found then
Solution is optimal

else
Increase T to smallest f (s) > T that was found

Memory required is O(|V |P)

Benefits from tight lower bounds initial threshold T
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Comparison of state space search techniques
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Lower bounds – general

Lower bound for any graph
Critical path length (without communication costs)

sl ≥
∑|V |

i=1 Li

Perfect load balance (sum of all task weights divided by number of
processors)

sl ≥ maxi∈V {bl(i)}

Often not very close (structure and communication costs)
⇒ Improve through ILP constraints and for certain graph types
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Destructive lower bound

Using ILP constraints to improve lower bound (not to solve scheduling
problem)

Compute destructive lower bound
Use ILP formulation (plus additional constraints)
Add constraint ∀ti ∈ V , ti + Li ≤ dlb
Binary search in dlb = lowerBound to upperBound :
Test for constraint violation
if constraints violated then

lowerBound ← dlb
else

upperBound ← dlb
Repeat until lowerBound = upperBound

Final lowerBound is new lower bound on schedule length
Note, that upperBound is non-conclusive
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ILP formulation

min W MinMax
∀i ∈ V ti + Li ≤W
∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 Overlap
∀i 6= j ∈ V σij + σji ≤ 1
∀i 6= j ∈ V εij + εji ≤ 1

∀j ∈ V : i ∈ δ−(j) σij = 1 Edge
∀j ∈ V : i ∈ δ−(j) pj − pi ≤ εij |P| Processor
∀j ∈ V : i ∈ δ−(j) pi − pj ≤ εji |P|
∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P| ≥ 0
∀i 6= j ∈ V tj − ti − Li − (σij − 1)Wmax ≥ 0 Precedence

∀j ∈ V : i ∈ δ−(j) ti + Li + γij(εij + εji ) ≤ tj
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Added constraints

Adding constraints that make check for constraint violation faster

But not solving ILP faster !

Level constraints

ti ≥ tl(i) (top level)
ti ≤W − bl(i) (bottom level)

Transitive constraints

If task i before task j and j before k , then i before k
εij + εjk ≥ εik
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Lower bound for fork

Example schedule on 5 processors

Red: perfect load balancing
Green: root task + perfect load balancing
Blue: root task + perfect load balancing
+ min. communication cost
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Lower bound for fork

LBF = Lroot +min1≤j≤|P|

{∑|V |
i=1 Li−Lroot+

∑j−1
k=1 SCCk

j

}
where SCC are the smallest incoming communication
costs in non-decreasing order
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Lower bound for join

LBJ = Lsink +min1≤j≤|P|

{∑|V |
i=1 Li−Lsink+

∑j−1
k=1 SCCk

j

}
where SCC are the smallest outgoing communication
costs in non-decreasing order
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Lower bound for fork-join

LBFJ = Lroot + Lsink +

min1≤j≤|P|

{∑|V |
i=1 Li−Lroot−Lsink+

∑j−1
k=1 SCCF

k +SCCJ
k

j

}
where SCC are the smallest outgoing communication
costs in non-decreasing order
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Evaluation

Set of 207 graphs, different structures and sizes

Graph Structure n = 10 n = 21 n = 30 Total
Fork-Join 4 4 4 12

Fork 4 4 4 12
Independent 1 1 1 3

InTree 8 8 8 24
Join 4 4 4 12

OutTree 8 8 8 24
Pipeline 4 4 4 12
Random 16 16 16 48

Series-Parallel 16 16 16 48
Stencil 4 4 4 12
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Improvement in tightness of bound – Destructive

Count of improved lower bound for the 207 graph database

p = 2 p = 4 p = 8 p = 16
59 122 162 166

Quality in improvement in the lower bound by using destructive lower
bounds

p = 2 p = 4 p = 8 p = 16

considered graphs 49 72 88 99

average normalised improvement slopt − lb 41.18% 52.37% 58.87% 56.34%
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Improvement in tightness of bound – Structure LB

Count of graphs with improved lower bound (out of 12 each)

p = 2 p = 4 p = 8 p = 16
fork 12 12 11 10
join 12 12 10 7

fork-join 11 12 10 6

Quality in improvement of bound by using structure lower bounds

p = 2 p = 4 p = 8 p = 16

considered graphs 5 10 13 9

average normalised improvement slopt − lb 84.96% 72.27% 57.29% 50.65%
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Bound impact on IDA*

Speedup on IDA* (no pruning) through Lower Bound improvements

Graph n (LB,LBProp) Time saved (p = 2) (LB,LBProp) Time saved (p = 4)

random 10 (23,29) 1s (22,26) 2m:54s

fork 10 (38,45) 51m:44s (19,31) 52m:22s

join 10 (30,37) 5h:50m (15,26) >12h

fork-join 10 (435,494) 1h:38m:49s (257,308) >12h
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Comparison IDA* and B&B

What is better? IDA* or B&B?

Runtime limit of 1 minute
Table shows number of obtained optimal schedules within time limit
(out of 207)

Number of Processors Branch and Bound IDA*
2 93 93
4 73 70
8 69 69
16 62 69
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Conclusion

Two new optimal solvers for task scheduling:
IDA*
Branch and bound
Do not run out of memory
Good bounds on schedule length significantly improve performance
Proposed mechanisms to improve bounds

Future
Use IDA* and B&B for gap calculation
Further pruning techniques
Extensive comparison between approaches
Parallelisation
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