
Schedule length bounds for optimal task scheduling

Sarad Venugopalan, Oliver Sinnen

Department of Electrical and Computer Engineering
University of Auckland, New Zealand

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 1 / 33

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

⇒

P|prec , cij |Cmax

Traditional and general problem
Strong NP-hard

⇒ Heuristics, most popular is list scheduling
But here,
⇒ Optimal solver, based on state space search
⇒ Today solver algorithms that work with limited memory

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 2 / 33

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

⇒

P|prec , cij |Cmax

Traditional and general problem
Strong NP-hard

⇒ Heuristics, most popular is list scheduling

But here,
⇒ Optimal solver, based on state space search
⇒ Today solver algorithms that work with limited memory

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 2 / 33

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

⇒

P|prec , cij |Cmax

Traditional and general problem
Strong NP-hard

⇒ Heuristics, most popular is list scheduling
But here,
⇒ Optimal solver, based on state space search
⇒ Today solver algorithms that work with limited memory

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 2 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 3 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 4 / 33

Scheduling problem

Finding start time and processor allocation for every task

⇒

ti : start time of task i
pi : processor of task i

Given by task graph G = (V ,E)

Li : execution time of task i
weight of node

γij : remote communication cost between tasks i and j
weight of edge

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 5 / 33

Constraints

⇒

Processor constraint

pi = pj ⇒
{

ti + Li ≤ tj
or tj + Lj ≤ ti

Precedence constraint
For each edge eij of E

tj ≥ ti + Li +

{
0 if pi = pj
γij otherwise

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 6 / 33

Constraints

⇒

Processor constraint

pi = pj ⇒
{

ti + Li ≤ tj
or tj + Lj ≤ ti

Precedence constraint
For each edge eij of E

tj ≥ ti + Li +

{
0 if pi = pj
γij otherwise

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 6 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 7 / 33

Optimal solution techniques

Mixed Integer Linear Programming – Venugopalan, Sinnen, IEEE
TPDS 2014

State Space Search

Exhaustive search through all possible solutions
Every state (node) s represents partial solution
Combinatorial problems ⇒ search tree
Deeper nodes are more complete solutions

Search techniques

A* – great performance, but memory problem !
IDA*, Branch and Bound – Limited memory search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 8 / 33

Optimal solution techniques

Mixed Integer Linear Programming – Venugopalan, Sinnen, IEEE
TPDS 2014

State Space Search

Exhaustive search through all possible solutions
Every state (node) s represents partial solution
Combinatorial problems ⇒ search tree
Deeper nodes are more complete solutions

Search techniques

A* – great performance, but memory problem !
IDA*, Branch and Bound – Limited memory search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 8 / 33

Optimal solution techniques

Mixed Integer Linear Programming – Venugopalan, Sinnen, IEEE
TPDS 2014

State Space Search

Exhaustive search through all possible solutions
Every state (node) s represents partial solution
Combinatorial problems ⇒ search tree
Deeper nodes are more complete solutions

Search techniques

A* – great performance, but memory problem !
IDA*, Branch and Bound – Limited memory search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 8 / 33

Solution space for scheduling problem

Essentially: list scheduling, trying out all task orders and all processor
allocations

State: partial schedule
Initial state: empty schedule
Cost function f (s): underestimate of makespan for complete schedule
based on s

Expansion
Given state s, let free(s) be free tasks

for all i ∈ free(s) do
for all P ∈ P do

Create new state: i scheduled on P as early as possible

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 9 / 33

Solution space for scheduling problem

Essentially: list scheduling, trying out all task orders and all processor
allocations

State: partial schedule
Initial state: empty schedule
Cost function f (s): underestimate of makespan for complete schedule
based on s

Expansion
Given state s, let free(s) be free tasks

for all i ∈ free(s) do
for all P ∈ P do

Create new state: i scheduled on P as early as possible

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 9 / 33

Solution tree

Task graph on two processors

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 10 / 33

Cost function f (s)

Three components
Perfect load balance plus current idle time

fidle−time(s) =
∑

i∈V Li + idle(s)
|P|

Max (start time of scheduled tasks plus their bottom level)

fbl (s) = max
i∈s
{ti + blw (i)}

Unscheduled tasks: Data-Ready-Time plus their bottom levels

fDRT (s) = max
i∈free(s)

{tdr (i) + blw (i)}

Complete f (s) function:

f (s) = max{fidle−time(s), fbl (s), fDRT (s)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 11 / 33

Cost function f (s)

Three components
Perfect load balance plus current idle time

fidle−time(s) =
∑

i∈V Li + idle(s)
|P|

Max (start time of scheduled tasks plus their bottom level)

fbl (s) = max
i∈s
{ti + blw (i)}

Unscheduled tasks: Data-Ready-Time plus their bottom levels

fDRT (s) = max
i∈free(s)

{tdr (i) + blw (i)}

Complete f (s) function:

f (s) = max{fidle−time(s), fbl (s), fDRT (s)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 11 / 33

Cost function f (s)

Three components
Perfect load balance plus current idle time

fidle−time(s) =
∑

i∈V Li + idle(s)
|P|

Max (start time of scheduled tasks plus their bottom level)

fbl (s) = max
i∈s
{ti + blw (i)}

Unscheduled tasks: Data-Ready-Time plus their bottom levels

fDRT (s) = max
i∈free(s)

{tdr (i) + blw (i)}

Complete f (s) function:

f (s) = max{fidle−time(s), fbl (s), fDRT (s)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 11 / 33

Cost function f (s)

Three components
Perfect load balance plus current idle time

fidle−time(s) =
∑

i∈V Li + idle(s)
|P|

Max (start time of scheduled tasks plus their bottom level)

fbl (s) = max
i∈s
{ti + blw (i)}

Unscheduled tasks: Data-Ready-Time plus their bottom levels

fDRT (s) = max
i∈free(s)

{tdr (i) + blw (i)}

Complete f (s) function:

f (s) = max{fidle−time(s), fbl (s), fDRT (s)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 11 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 12 / 33

Branch and Bound

Branch and Bound – can mean many things
Usual meaning: DFS Branch and Bound

B & B
B ← upperBound
DFS on state space (depth until f (s) ≥ B):
if complete solution sc found & f (sc) < B then

B ← f (sc)

Memory required is O(|V |P)

Benefits from tight upper bounds for initial B

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 13 / 33

Branch and Bound

Branch and Bound – can mean many things
Usual meaning: DFS Branch and Bound

B & B
B ← upperBound
DFS on state space (depth until f (s) ≥ B):
if complete solution sc found & f (sc) < B then

B ← f (sc)

Memory required is O(|V |P)

Benefits from tight upper bounds for initial B

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 13 / 33

Branch and Bound

Branch and Bound – can mean many things
Usual meaning: DFS Branch and Bound

B & B
B ← upperBound
DFS on state space (depth until f (s) ≥ B):
if complete solution sc found & f (sc) < B then

B ← f (sc)

Memory required is O(|V |P)

Benefits from tight upper bounds for initial B

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 13 / 33

IDA*

Iterative Deepening A* (IDA*)
Uses threshold

Depth limited by threshold: if f (s) > threshold do not descend further

IDA*
T ← lowerBound
while no complete solution do
DFS on state space (depth until f (s) > T)
if complete solution found then
Solution is optimal

else
Increase T to smallest f (s) > T that was found

Memory required is O(|V |P)

Benefits from tight lower bounds initial threshold T

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 14 / 33

IDA*

Iterative Deepening A* (IDA*)
Uses threshold

Depth limited by threshold: if f (s) > threshold do not descend further

IDA*
T ← lowerBound
while no complete solution do
DFS on state space (depth until f (s) > T)
if complete solution found then
Solution is optimal

else
Increase T to smallest f (s) > T that was found

Memory required is O(|V |P)

Benefits from tight lower bounds initial threshold T

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 14 / 33

IDA*

Iterative Deepening A* (IDA*)
Uses threshold

Depth limited by threshold: if f (s) > threshold do not descend further

IDA*
T ← lowerBound
while no complete solution do
DFS on state space (depth until f (s) > T)
if complete solution found then
Solution is optimal

else
Increase T to smallest f (s) > T that was found

Memory required is O(|V |P)

Benefits from tight lower bounds initial threshold T

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 14 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Comparison of state space search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 15 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 16 / 33

Lower bounds – general

Lower bound for any graph
Critical path length (without communication costs)

sl ≥
∑|V |

i=1 Li

Perfect load balance (sum of all task weights divided by number of
processors)

sl ≥ maxi∈V {bl(i)}

Often not very close (structure and communication costs)
⇒ Improve through ILP constraints and for certain graph types

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 17 / 33

Lower bounds – general

Lower bound for any graph
Critical path length (without communication costs)

sl ≥
∑|V |

i=1 Li

Perfect load balance (sum of all task weights divided by number of
processors)

sl ≥ maxi∈V {bl(i)}

Often not very close (structure and communication costs)
⇒ Improve through ILP constraints and for certain graph types

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 17 / 33

Lower bounds – general

Lower bound for any graph
Critical path length (without communication costs)

sl ≥
∑|V |

i=1 Li

Perfect load balance (sum of all task weights divided by number of
processors)

sl ≥ maxi∈V {bl(i)}

Often not very close (structure and communication costs)
⇒ Improve through ILP constraints and for certain graph types

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 17 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 18 / 33

Destructive lower bound

Using ILP constraints to improve lower bound (not to solve scheduling
problem)

Compute destructive lower bound
Use ILP formulation (plus additional constraints)
Add constraint ∀ti ∈ V , ti + Li ≤ dlb
Binary search in dlb = lowerBound to upperBound :
Test for constraint violation
if constraints violated then

lowerBound ← dlb
else

upperBound ← dlb
Repeat until lowerBound = upperBound

Final lowerBound is new lower bound on schedule length
Note, that upperBound is non-conclusive

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 19 / 33

ILP formulation

min W MinMax
∀i ∈ V ti + Li ≤W
∀i 6= j ∈ V σij + σji + εij + εji ≥ 1 Overlap
∀i 6= j ∈ V σij + σji ≤ 1
∀i 6= j ∈ V εij + εji ≤ 1

∀j ∈ V : i ∈ δ−(j) σij = 1 Edge
∀j ∈ V : i ∈ δ−(j) pj − pi ≤ εij |P| Processor
∀j ∈ V : i ∈ δ−(j) pi − pj ≤ εji |P|
∀i 6= j ∈ V pj − pi − 1− (εij − 1)|P| ≥ 0
∀i 6= j ∈ V tj − ti − Li − (σij − 1)Wmax ≥ 0 Precedence

∀j ∈ V : i ∈ δ−(j) ti + Li + γij(εij + εji) ≤ tj

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 20 / 33

Added constraints

Adding constraints that make check for constraint violation faster

But not solving ILP faster !

Level constraints

ti ≥ tl(i) (top level)
ti ≤W − bl(i) (bottom level)

Transitive constraints

If task i before task j and j before k , then i before k
εij + εjk ≥ εik

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 21 / 33

Added constraints

Adding constraints that make check for constraint violation faster

But not solving ILP faster !

Level constraints

ti ≥ tl(i) (top level)
ti ≤W − bl(i) (bottom level)

Transitive constraints

If task i before task j and j before k , then i before k
εij + εjk ≥ εik

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 21 / 33

Added constraints

Adding constraints that make check for constraint violation faster

But not solving ILP faster !

Level constraints

ti ≥ tl(i) (top level)
ti ≤W − bl(i) (bottom level)

Transitive constraints

If task i before task j and j before k , then i before k
εij + εjk ≥ εik

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 21 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 22 / 33

Lower bound for fork

Example schedule on 5 processors

Red: perfect load balancing
Green: root task + perfect load balancing
Blue: root task + perfect load balancing
+ min. communication cost

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 23 / 33

Lower bound for fork

Example schedule on 5 processors
Red: perfect load balancing

Green: root task + perfect load balancing
Blue: root task + perfect load balancing
+ min. communication cost

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 23 / 33

Lower bound for fork

Example schedule on 5 processors
Red: perfect load balancing
Green: root task + perfect load balancing

Blue: root task + perfect load balancing
+ min. communication cost

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 23 / 33

Lower bound for fork

Example schedule on 5 processors
Red: perfect load balancing
Green: root task + perfect load balancing
Blue: root task + perfect load balancing
+ min. communication cost

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 23 / 33

Lower bound for fork

LBF = Lroot +min1≤j≤|P|

{∑|V |
i=1 Li−Lroot+

∑j−1
k=1 SCCk

j

}
where SCC are the smallest incoming communication
costs in non-decreasing order

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 24 / 33

Lower bound for join

LBJ = Lsink +min1≤j≤|P|

{∑|V |
i=1 Li−Lsink+

∑j−1
k=1 SCCk

j

}
where SCC are the smallest outgoing communication
costs in non-decreasing order

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 25 / 33

Lower bound for fork-join

LBFJ = Lroot + Lsink +

min1≤j≤|P|

{∑|V |
i=1 Li−Lroot−Lsink+

∑j−1
k=1 SCCF

k +SCCJ
k

j

}
where SCC are the smallest outgoing communication
costs in non-decreasing order

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 26 / 33

Content

1 Scheduling problem

2 State space search

3 Limited memory searches

4 Lower bounds
Destructive lower bound
Bounds for certain graph structures

5 Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 27 / 33

Evaluation

Set of 207 graphs, different structures and sizes

Graph Structure n = 10 n = 21 n = 30 Total
Fork-Join 4 4 4 12

Fork 4 4 4 12
Independent 1 1 1 3

InTree 8 8 8 24
Join 4 4 4 12

OutTree 8 8 8 24
Pipeline 4 4 4 12
Random 16 16 16 48

Series-Parallel 16 16 16 48
Stencil 4 4 4 12

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 28 / 33

Improvement in tightness of bound – Destructive

Count of improved lower bound for the 207 graph database

p = 2 p = 4 p = 8 p = 16
59 122 162 166

Quality in improvement in the lower bound by using destructive lower
bounds

p = 2 p = 4 p = 8 p = 16

considered graphs 49 72 88 99

average normalised improvement slopt − lb 41.18% 52.37% 58.87% 56.34%

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 29 / 33

Improvement in tightness of bound – Structure LB

Count of graphs with improved lower bound (out of 12 each)

p = 2 p = 4 p = 8 p = 16
fork 12 12 11 10
join 12 12 10 7

fork-join 11 12 10 6

Quality in improvement of bound by using structure lower bounds

p = 2 p = 4 p = 8 p = 16

considered graphs 5 10 13 9

average normalised improvement slopt − lb 84.96% 72.27% 57.29% 50.65%

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 30 / 33

Bound impact on IDA*

Speedup on IDA* (no pruning) through Lower Bound improvements

Graph n (LB,LBProp) Time saved (p = 2) (LB,LBProp) Time saved (p = 4)

random 10 (23,29) 1s (22,26) 2m:54s

fork 10 (38,45) 51m:44s (19,31) 52m:22s

join 10 (30,37) 5h:50m (15,26) >12h

fork-join 10 (435,494) 1h:38m:49s (257,308) >12h

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 31 / 33

Comparison IDA* and B&B

What is better? IDA* or B&B?

Runtime limit of 1 minute
Table shows number of obtained optimal schedules within time limit
(out of 207)

Number of Processors Branch and Bound IDA*
2 93 93
4 73 70
8 69 69
16 62 69

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 32 / 33

Comparison IDA* and B&B

What is better? IDA* or B&B?

Runtime limit of 1 minute
Table shows number of obtained optimal schedules within time limit
(out of 207)

Number of Processors Branch and Bound IDA*
2 93 93
4 73 70
8 69 69
16 62 69

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 32 / 33

Conclusion

Two new optimal solvers for task scheduling:
IDA*
Branch and bound
Do not run out of memory
Good bounds on schedule length significantly improve performance
Proposed mechanisms to improve bounds

Future
Use IDA* and B&B for gap calculation
Further pruning techniques
Extensive comparison between approaches
Parallelisation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task scheduling Lyon 2014 33 / 33

	Scheduling problem
	State space search
	Limited memory searches
	Lower bounds
	Destructive lower bound
	Bounds for certain graph structures

	Evaluation

