Schedule length bounds for optimal task scheduling

Sarad Venugopalan, Oliver Sinnen

~ | PARALLEL AND RECONFIGURABLE
I_"\y COMPUTING GROUP

Department of Electrical and Computer Engineering
University of Auckland, New Zealand

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 1/33

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

Py P,

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 2/33

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

Py P,

P|prec, cij| Cmax
o Traditional and general problem
@ Strong NP-hard

= Heuristics, most popular is list scheduling

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 2/33

Task scheduling with communication delays

Scheduling task graphs with communication delays on homogeneous
processors

Py P,

P|prec, cij| Cmax
o Traditional and general problem
@ Strong NP-hard
= Heuristics, most popular is list scheduling
But here,
= Optimal solver, based on state space search

= Today solver algorithms that work with limited memory

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 2/33

Content

© Scheduling problem
@ State space search

© Limited memory searches

@ Lower bounds
@ Destructive lower bound
@ Bounds for certain graph structures

@ Evaluation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 3/33

Content

© Scheduling problem

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 4 /33

Scheduling problem

Finding start time and processor allocation for every task

Py Py

@ t; : start time of task / J

@ p; : processor of task f

Given by task graph G = (V, E)
o L; : execution time of task i/
e weight of node

@ 7jj : remote communication cost between tasks i and j
e weight of edge

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014

P P

Processor constraint

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 6 /33

P P

Precedence constraint

For each edge e of E

0 if pi=p;

t; >t + L; .
j 2t '+{ 7ij otherwise

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 6 /33

Content

@ State space search

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 7/ 33

Optimal solution techniques

@ Mixed Integer Linear Programming — Venugopalan, Sinnen, IEEE
TPDS 2014

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 8 /33

Optimal solution techniques

@ Mixed Integer Linear Programming — Venugopalan, Sinnen, IEEE
TPDS 2014

@ State Space Search

Exhaustive search through all possible solutions
Every state (node) s represents partial solution
Combinatorial problems = search tree

Deeper nodes are more complete solutions

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 8 /33

Optimal solution techniques

@ Mixed Integer Linear Programming — Venugopalan, Sinnen, IEEE
TPDS 2014

@ State Space Search

Exhaustive search through all possible solutions
Every state (node) s represents partial solution
Combinatorial problems = search tree

Deeper nodes are more complete solutions

@ Search techniques

o A* — great performance, but memory problem !
o IDA*, Branch and Bound — Limited memory search techniques

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 8 /33

Solution space for scheduling problem

Essentially: list scheduling, trying out all task orders and all processor
allocations

@ State: partial schedule
o Initial state: empty schedule

@ Cost function f(s): underestimate of makespan for complete schedule
based on s

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 9/33

Solution space for scheduling problem

Essentially: list scheduling, trying out all task orders and all processor
allocations

@ State: partial schedule
o Initial state: empty schedule

@ Cost function f(s): underestimate of makespan for complete schedule
based on s

o Given state s, let free(s) be free tasks

for all i € free(s) do
for all P € P do
Create new state: i scheduled on P as early as possible

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 9/33

Solution tree

@ Task graph on two processors

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 10 / 33

Cost function 7(5s)

Three components

@ Perfect load balance plus current idle time
> icv Li + idle(s)
P

fid/e—time (5) =

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 11 / 33

Cost function 7(5s)

Three components

@ Perfect load balance plus current idle time
> icv Li + idle(s)
P

fid/e—time (5) =

@ Max (start time of scheduled tasks plus their bottom level)

fo(s) = max{t; + bl (i)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 11 / 33

Cost function 7(5s)

Three components

@ Perfect load balance plus current idle time

ey Li + idle(s
fid/e—time(s) = Z S |P| ()

@ Max (start time of scheduled tasks plus their bottom level)

fo(s) = max{t; + bl (i)}

@ Unscheduled tasks: Data-Ready-Time plus their bottom levels
fort(s) = max, {tdr(/) + bl (i)}

iefre

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 11 / 33

Cost function 7(5s)

Three components

@ Perfect load balance plus current idle time

ey Li + idle(s
fid/e—time(s) = Z S |P| ()

@ Max (start time of scheduled tasks plus their bottom level)

fo(s) = max{t; + bl (i)}

@ Unscheduled tasks: Data-Ready-Time plus their bottom levels
fort(s) = max, {tdr(/) + bl (i)}

iefre

Complete f(s) function:

f(s) = max{figie—time(5), foi(s), forT(5)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 11 / 33

Content

© Limited memory searches

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 12 / 33

Branch and Bound

@ Branch and Bound — can mean many things

@ Usual meaning: DFS Branch and Bound

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 13 /33

Branch and Bound

@ Branch and Bound — can mean many things

@ Usual meaning: DFS Branch and Bound

B <« upperBound
DFS on state space (depth until f(s) > B):

if complete solution s, found & f(s.) < B then
B+ f(sc)

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 13 /33

Branch and Bound

@ Branch and Bound — can mean many things

@ Usual meaning: DFS Branch and Bound

B <« upperBound
DFS on state space (depth until f(s) > B):

if complete solution s, found & f(s.) < B then
B+ f(sc)

e Memory required is O(|V|P)
@ Benefits from tight upper bounds for initial B

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 13 /33

o Iterative Deepening A* (IDA¥*)
@ Uses threshold
o Depth limited by threshold: if f(s) > threshold do not descend further

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 14 / 33

IDA*

o Iterative Deepening A* (IDA¥*)
@ Uses threshold
o Depth limited by threshold: if f(s) > threshold do not descend further

T < lowerBound
while no complete solution do
DFS on state space (depth until f(s) > T)
if complete solution found then
Solution is optimal
else
Increase T to smallest f(s) > T that was found

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 14 / 33

IDA*

o Iterative Deepening A* (IDA¥*)
@ Uses threshold
o Depth limited by threshold: if f(s) > threshold do not descend further

T < lowerBound
while no complete solution do
DFS on state space (depth until f(s) > T)
if complete solution found then
Solution is optimal
else
Increase T to smallest f(s) > T that was found

e Memory required is O(|V|P)
@ Benefits from tight lower bounds initial threshold T

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 14 / 33

Comparison of state space search techniques

===

Pl P Pl P Pl P Pl P
a a a

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Comparison of state space search techniques

S

Pl P Pl P Pl P Pl P
a a a

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Comparison of state space search techniques

State Space ~

[V +1

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Comparison of state space search techniques

State Space a

V) +1

f(s)=opt. sl

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Comparison of state space search techniques

State Space a

v +1

f(s)=opt. sl

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Comparison of state space search techniques

State Space a

v +1

f(s)=opt. sl

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Comparison of state space search techniques

State Space a

IDA* 2

v +1

f(s)=opt. sl

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 15 / 33

Content

@ Lower bounds
@ Destructive lower bound
@ Bounds for certain graph structures

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 16 / 33

Lower bounds — general

Lower bound for any graph

@ Critical path length (without communication costs)

o s>y L

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 17 / 33

Lower bounds — general

Lower bound for any graph

@ Critical path length (without communication costs)

o s>y L

@ Perfect load balance (sum of all task weights divided by number of
processors)

o s/ > max;ev{bl(i)}

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 17 / 33

Lower bounds — general

Lower bound for any graph

@ Critical path length (without communication costs)

o sl> YL

@ Perfect load balance (sum of all task weights divided by number of
processors)

o s/ > max;ev{bl(i)}

Often not very close (structure and communication costs)

= Improve through ILP constraints and for certain graph types

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 17 / 33

Content

@ Lower bounds

@ Destructive lower bound

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 18 / 33

Destructive lower bound

@ Using ILP constraints to improve lower bound (not to solve scheduling
problem)

Compute destructive lower bound

Use ILP formulation (plus additional constraints)
Add constraint Vt; € V., t; + L; < dIb
Binary search in dlb = lowerBound to upperBound:
Test for constraint violation
if constraints violated then
lowerBound <+ dIb
else
upperBound < dlb
Repeat until lowerBound = upperBound

e Final lowerBound is new lower bound on schedule length
o Note, that upperBound is non-conclusive

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 19 / 33

ILP formulation

min w MinMax
VieV t+L<W

VI#]EV (T,'J'+(J'j,‘+€,‘j+€j,'21 Overlap

VitjeV o+ 0ji < 1

Vi£jeV €jtei<l
VieV :ies()) oj =1 Edge
VieV :ied ()) p; — pi < €| P| Processor
VjeV :ied () pi — pj < €ji| P

ViZjeV p-pi—1—(-1)|P|>0

Vi£jeV ti—ti— L — (0jj — 1)Wpmax > 0 Precedence
VieV: I'E(Sf(j) t,'—i-L,'—i—’yU(e,j—l—ej,')Stj

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 20 / 33

Added constraints

@ Adding constraints that make check for constraint violation faster

e But not solving ILP faster !

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 21 /33

Added constraints

@ Adding constraints that make check for constraint violation faster

e But not solving ILP faster !

@ Level constraints

o t; > tl(i) (top level)
o t; < W — bl(i) (bottom level)

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 21 /33

Added constraints

@ Adding constraints that make check for constraint violation faster

e But not solving ILP faster !

o Level constraints

o t; > tl(i) (top level)

o t; < W — bl(i) (bottom level)
@ Transitive constraints

o If task i before task j and j before k, then i/ before k
° €+ €k = €k

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 21 /33

Content

@ Lower bounds

@ Bounds for certain graph structures

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 22 /33

Lower bound for fork

Example schedule on 5 processors

P P2 P3 P4 Ps

\
time

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 23 /33

Lower bound for fork

Example schedule on 5 processors

@ Red: perfect load balancing

P P2 P3 P4 Ps

\
time

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 23 /33

Lower bound for fork

Example schedule on 5 processors

@ Red: perfect load balancing

@ Green: root task + perfect load balancing

Py

P2

\
time

Oliver Sinnen (Uni. of Auckland)

Schedule length bounds for optimal task :

Lyon 2014 23 /33

Lower bound for fork

Example schedule on 5 processors

@ Red: perfect load balancing

@ Green: root task + perfect load balancing

@ Blue: root task + perfect load balancing

+ min. communication cost

Py

P2

P3

P4

0

A

\
time

Oliver Sinnen (Uni. of Auckland)

Schedule length bounds for optimal task :

Lyon 2014 23 /33

Lower bound fork

LBF = Lioot + minlgi§|P|

J

S L Lot +33971 SCC }

()
where SCC are the smallest incoming communication % ! %
OO000 ~000

costs in non-decreasing order

Oliver Sinnen (Uni. of Auckland)

P P2 3 Py Ps
A
]
]
\/
time
Schedule length bounds for optimal task : Lyon 2014 24 / 33

Lower bound for join

Z!ZJ Li—Lgnk+>53 SCCi }

LB; = Lsipk + miny<j<|p| 7

where SCC are the smallest outgoing communication
costs in non-decreasing order

0 P P P3 P4 Ps
.
1
S
\
time

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 25 /33

Lower bound for fork-join

LBFJ = Lroot + Lsink +)
Zl‘:/l‘ LifLroothsink‘i’ij_:ll SCCI::‘FSCCLI }

min<j<|p| 7

where SCC are the smallest outgoing communication
costs in non-decreasing order

Pi) P3 P4 Ps
A

\/

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 26 / 33

Content

@ Evaluation

Oliver Sinnen ni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 27 / 33

Evaluation

@ Set of 207 graphs, different structures and sizes

] Graph Structure ‘ n=10 ‘ n=21 ‘ n=30 ‘ Total ‘

Fork-Join 4 4 4 12
Fork 4 4 4 12
Independent 1 1 1 3
InTree 8 8 8 24
Join 4 4 4 12
OutTree 8 8 8 24
Pipeline 4 4 4 12
Random 16 16 16 48
Series-Parallel 16 16 16 48
Stencil 4 4 4 12

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 28 / 33

Improvement in tightness of bound — Destructive

e Count of improved lower bound for the 207 graph database

;59\122\162\166\

@ Quality in improvement in the lower bound by using destructive lower
bounds

=2 [5=+ [5=% [r=1]
considered graphs 49 72 88 99
average normalised improvement slop: — Ib | 41.18% | 52.37% | 58.87% | 56.34%

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 29 / 33

Improvement in tightness of bound — Structure LB

e Count of graphs with improved lower bound (out of 12 each)

| [p=2]p=4]p=8[p=16]

fork 12 12 11 10
join 12 12 10 7
fork-join 11 12 10 6

@ Quality in improvement of bound by using structure lower bounds

| =2 (=4 [s [r-56]
considered graphs 5 10 13 9
average normalised improvement slopr — Ib | 84.96% | 72.27% | 57.29% | 50.65%

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 30 /33

Bound impact on IDA*

@ Speedup on IDA* (no pruning) through Lower Bound improvements

’ Graph ‘ n ‘ (LB,LBprop) ‘ Time saved (p = 2) ‘ (LB,LBprop) ‘ Time saved (p = 4) ‘

random | 10 (23,29) 1s (22,26) 2m:54s
fork 10 (38,45) 51m:44s (19,31) 52m:22s
join 10 (30,37) 5h:50m (15,26) >12h

fork-join | 10 (435,494) 1h:38m:49s (257,308) >12h

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 31 /33

Comparison IDA* and B&B

@ What is better? IDA* or B&B?

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 32 /33

Comparison IDA* and B&B

@ What is better? IDA* or B&B?

@ Runtime limit of 1 minute

@ Table shows number of obtained optimal schedules within time limit
(out of 207)

] Number of Processors \ Branch and Bound \ IDA* ‘

2 93 93
4 73 70
8 69 69
16 62 69

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 32 /33

Conclusion

Two new optimal solvers for task scheduling:
o IDA*
@ Branch and bound
@ Do not run out of memory
@ Good bounds on schedule length significantly improve performance
@ Proposed mechanisms to improve bounds
Future
@ Use IDA* and B&B for gap calculation
@ Further pruning techniques
@ Extensive comparison between approaches
°

Parallelisation

Oliver Sinnen (Uni. of Auckland) Schedule length bounds for optimal task : Lyon 2014 33 /33

	Scheduling problem
	State space search
	Limited memory searches
	Lower bounds
	Destructive lower bound
	Bounds for certain graph structures

	Evaluation

