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Context and goals

Context

v

EDF R&D is looking for a Fast Reference Solver
PhD Student: Salli Moustafa

v

v

Industrial solvers:

» diffusion approximation (= SP1);
» COCAGNE (SPN).

Solution on more than 10! degrees of freedom (DoFs)
involved

v

» probabilistic solvers (very long computation time);
» deterministic solvers.

DOMINO (SN) is designed for this validation purpose.
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Context and goals

DOMINO: Discrete Ordinates Method In NeutrOnics

» Deterministic, Cartesian, and 3D solver;
> 3 levels of discretization:
» energy (G): multigroup formalism;
> angle (Q): Level Symmetric Quadrature, N(N + 2) directions
» space (x,y, z): Diamond Differencing scheme (order 0);
» 3 nested levels of iterations:
> power iterations + Chebychev acceleration;
» multigroup iterations: Gauss—Seidel algorithm;
» scattering iterations + DSA acceleration (using the SPN
solver):
— spatial sweep, which consumes most of the computation
time.
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Context and goals

The Sweep Algorithm

forall the o € Octants do

forall the ¢ € Cells do

> c = (i,), k)

forall the d € Directions[o] do

end

end

end

>d=(v,u,§)

_ 2v. _ 2n. _ 2.
fx*rl;r Gy*iylv fzfé,
_ ex¥teypptezpp+S
plolle]ld] = T exteyteirr

Yrlolle]ld] = 2¢[o][c][d] — v [o][c][d];

Yrlollelld] = 2¢[o][c][d] — ¥plol[c]ld];
¥prollelld] = 2¢[o][e]ld] — ¥ r[o][c](d];
S[KII = SIKIGI + le]le][d] * w(d];

» O add or sub;

» 11 mul;

» 1 div (5 flops)
— 25 flops per cell, per
direction, per energy

group.
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (1/2)

T
Yr YR
YF
VB

3D regular mesh with per cell, per angle, per energy group:

» 1 moment to update

> 3 incoming fluxes

» 3 outgoing fluxes
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (2/2)

2D example of the spatial mesh for one octant

At the beginning, data are known only on the incoming faces

I ready cell

4
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (2/2)

2D example of the spatial mesh for one octant

I processed cell
I rcady cell

4
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Context and goals

The Spatial Sweep (Diamond Differencing scheme) (2/2)

2D example of the spatial mesh for one octant

. after a few steps

I processed cell
I rcady cell

4
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Parallelization Strategies

Many opportunities for parallelism

» Each level of discretization is a potentially independent
computation:
> energy group
> angles
> space
> All energy groups are computed together
» All angles are considered independent
— This is not true when problems have boundary conditions
> All cell updates on a front are independent
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Parallelization Strategies

Angular Parallelization Level (Very Low Level)

Several directions belong to the same octant:
» Vectorization of the computation

> Use of SIMD units at processor/core level
— improve kernel performance

-
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Parallelization Strategies

Spatial Parallelization

First level: granularity

I processed cell
I ready cell

4

Grouping cells in MacroCells:
» Reduces thread scheduling overhead
» Similar to exploiting BLAS 3

> Reduces overall parallelism
l&b?&a—— M. Faverge - 9th Scheduling Workshop July 1, 2014- 12



Parallelization Strategies

Spatial Parallelization

First level: granularity

4

Grouping cells in MacroCells:
» Reduces thread scheduling overhead
» Similar to exploiting BLAS 3

> Reduces overall parallelism
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Parallelization Strategies

Octant Parallelization

Case of Vacuum Boundary Conditions

When using vacuum boundary conditions, all octants are indepen-
dent from each other

-
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Parallelization Strategies
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When using vacuum boundary conditions, all octants are indepen-
dent from each other

l&:/zél—— M. Faverge - 9th Scheduling Workshop July 1, 2014- 13



Parallelization Strategies

Octant Parallelization

Case of Vacuum Boundary Conditions

Concurrent access to a cell (or MacroCell) are protected by mutexes.
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Parallelization Strategies

Octant Parallelization

Case of Vacuum Boundary Conditions

Concurrent access to a cell (or MacroCell) are protected by mutexes.
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Basic ideas - Flat Model
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Sweep Theoritical Model

Basic ideas - Flat Model

» 1D block distribution
> Requires:

» 14 tasks
» 7 communications
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Sweep Theoritical Model

Basic ideas - Flat Model
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Sweep Theoritical Model

Formulas (Adams et al.)

We define the efficiency of the sweep algorithm as follow:

Ttask N. tasks

(Ntasks + Nidle) * (Ttask + Tcomm)
1

(1 + Nidle/Ntasks) * (1 + Tcomm/ Ttask)

Objective: Minimize Ny

-
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Sweep Theoritical Model

Filling the pipeline
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Sweep Theoritical Model

For 3D block distribution

The minimal number of idle steps are those required to reach the
cube center:

M = P+ 6x—2+ P, +0, —2+ P, + 6, —2

where 6, = 0, if P, is even, 1 otherwise.
Objective: Minimize the sum P + Q + R, where P x Q X R is

the process grid.
— Hybrid MPI-Thread implementation should allow this
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Sweep Theoritical Model

Hybrid MPI-Thread model

7 8 9 10~p11 | 12 | 13 | 14

6 7 8 9~p10 | 11 | 12 | 13

516 7  8~p9 |10 11 | 12 > Requires:
>
4 |5 6| 7~8 9 10 11 14 tasks -
S S S S S S S S » 2 communications
X X X X X X X X .
3 415 6~b7 8 910 instead of 7
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Sweep Theoritical Model

Hybrid MPI-Thread model

7 8 9 10~p11 | 12 | 13 | 14

6 7 8 9~p10 | 11 | 12 | 13

516 7  8~p9 |10 11 | 12 > Requires:
>
4 |5 6| 7~8 9 10 11 14 tasks -
S S S S S S S S » 2 communications
X X X X X X X X .
3 415 6~b7 8 910 instead of 7

» Only 2 cores per
node!!!
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Sweep Theoritical Model

Hybrid MPI-Thread model

Scheduling by front

4 » Natural order: follow
the fronts

+
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Sweep Theoritical Model

Hybrid MPI-Thread model

Scheduling by front
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Sweep Theoritical Model

Hybrid MPI-Thread model

Scheduling by front

~

~

~

s » Natural order: follow
2 4 4 2 4 4 4 4
g Tttt Tttt the fronts

~

> Requires 19 steps

3 4 ~s
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Sweep Theoritical Model

Hybrid MPI-Thread model

Scheduling by front

4 » Natural order: follow
the fronts
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Sweep Theoritical Model

Hybrid MPI-Thread model

Scheduling by front

11 | 12 | 13 | 14~p16 17 18 | 19

9 10 | 12 | 13~p 14 | 15 | 17 | 18

7 8 10 | 11~p12 | 13 | 15 | 16

6 7 8 | 9~b11 12|13 14 » Natural order: follow
£y 4 4 £y 4 4 4 4

T L L L[ X X L X the fronts

516 7  8~p10 | 11 12 | 13

> Requires 19 steps
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Sweep Theoritical Model

Hybrid MPI-Thread model

Favour one direction

~
~
A » Give priority to one
direction of the
~
£y 4 4 £y 4 4 4 4 octant
X X X X X X X X .
~T > Might delay other
A directions
» Requires 18 steps
~
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Sweep Theoritical Model

Hybrid MPI-Thread model

Favour one direction

~
~
A » Give priority to one
direction of the
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X X X X X X X X .
~ > Might delay other
directions
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Sweep Theoritical Model

Hybrid MPI-Thread model

Favour one direction

~
~
A » Give priority to one
direction of the
~
£y 4 4 £y 4 4 4 4 octant
X X X X X X X X .
5 ~T > Might delay other
4| s A directions
» Requires 18 steps
1 2|3 4a~ps
0l 1|2 3~a|s




Sweep Theoritical Model

Hybrid MPI-Thread model

Favour one direction

~
~
A » Give priority to one
direction of the
6 ~
£y 4 4 £y 4 4 4 4 octant
X X X X X X X X .
5 6 ~T > Might delay other
directions

» Requires 18 steps

1 2 3 4~p 5 6

0 1 2 3~ 4 5 6




Sweep Theoritical Model

Hybrid MPI-Thread model

Favour one direction

11 | 12 | 13 | 14~p15 16 17 | 18

10 | 11 | 12 | 13~p14 15 16 | 17

7 08 9 10~p11 12 13 14 » Give priority to one
direction of the

6 7 8  9~pl0 11 12 13

2 4 4 2 4 4 4 4 octant

X X X X X X X X .

516 7 | 8~p9 10 11|12 » Might delay other

directions

» Requires 18 steps
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Sweep Theoritical Model

Hybrid MPI-Thread model

Priority used

For 3D distribution grid P x Q x R with P > @ > R, we favour
the largest direction first.

-
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DOMINO on top of PARSEC

DOMINO on top of PaRSEC

Implementation

v

Only one kind of task:

» Associated to one MacroCell

> All energy group

» All directions included in one octant

— 8 tasks per MacroCell

No dependencies from one octant to another
— protected by mutexes

v

v

Simple algorithm to write in JDF
Require a data distribution:

» Independent from the algorithm: 2D, 3D, cyclic or not, ...
» For now: Block-3D (Non cyclic) with a P x @ x R grid

Fluxes on faces are dynamically allocated/freed by the runtime
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DOMINO on top of PARSEC

DOMINO JDF Representation (1 sweep in 2D)

1 T(a, b)

2 // Execution space

3 a=0..3

4 b=0..3

5

6 // Parallel partitioning

7 : mcg(a, b)

8

9 // Parameters

10 RWX <= (a!=0) ? X T(a—1, b)
1 —> (a!=3) 72 X T(a+l, b)
12

13 RWY <= (b!=10) 7Y T(b, b—1)
14 —> (b 1= 3) 7Y T(b, b+1)
15

16 RW MCG <— mcg(a, b)

17 —> mcg(a, b)

18

19 BODY

20 |

21 computePhi ( MCG, X, Y, ... );

2}

23 END
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Results

Shared Memory Results (PARSEC VS Intel TBB)

32 cores — Intel X7560

350

Practical Peak
PaRSEC ——

300

250

200

Gflop/s

150

100

50

5 10 15 20 25 30
Size (Bytes)

» Mesh size: 480 x 480 x 480; Level Symmetric S16 (288
directions)

» Achieves 291 Gflop/s (51% of Theoretical Peak Perf.)
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Results

Distributed Memory Results — Hybrid

IVANOE — 768 cores (64 nodes of 12 cores) — Intel X7560

10 T T
Practical Peak
lodel ---e---
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e
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Core Number

» Mesh size: 480 x 480 x 480; Level Symmetric S16 (288
directions)

» Parallel efficiency: 52.7%

> 4.8 Tflop/s (26.8% of Theoretical Peak Perf.) at 768 cores
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Results

Distributed Memory Results — Hybrid

IVANOE — 768 cores (64 nodes of 12 cores) — Intel X7560

Praciical Peak ~
-
w/ Priority —e— 4
w/o Priority —&— z/i/
2
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Core Number

» Mesh size: 480 x 480 x 480; Level Symmetric S16 (288
directions)

» Parallel efficiency: 66.8%

> 6.2 Tflop/s (34.4% of Theoretical Peak Perf.) at 768 cores
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Results

Distributed Memory Results — Hybrid

Execution traces

Execution trace for a run on 8 nodes (2, 2, 2) (w/o priorities).
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Results

Distributed Memory Results — Hybrid

Execution traces

Execution trace for a run on 8 nodes (2, 2, 2) (w/ priorities).
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Results

Distributed Memory Results — Flat vs Hybrid
IVANOE — 384 cores — Intel X7560

10 T T
Practical Peak
Hybrid - Model -------
Hybrid - PARSEC —e—
Flat - Model -------
Flat- PaRSEC —&—
2
g g
01 L
o~ < © © T © x ¥
S < S 3 ]
b & & 3

Core Number

» Mesh size: 120 x 120 x 120; Level Symmetric S16 (288

directions)

» Flat model: Overlap is not integrated into the model
Mo g
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Conclusion and future works

Conclusion and Future Work

Conclusion

» Efficient implementation on top of PaRSEC

» Less than 2 weeks to be implemented
» Comparable to Intel TBB in shared memory

» Simple multi-level implementation:

» Code vectorization (angular direction)
» Block algorithm (MacroCells)
» Hybrid MPI-Thread implementation

Future work

» Fix the hybrid model to try new scheduling and get the best
data distribution out of it
» Experiments on Intel Xeon Phi

» Model of the symmetric case
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