Efficient and Robust Allocation Algorithms in Clouds under Memory Constraints

Olivier Beaumont, Lionel Eyraud-Dubois, Paul Renaud-Goud

Inria & University of Bordeaux Bordeaux, France

9th Scheduling for Large Scale Systems Workshop

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
000		000	
Provider-si	de allocation		

Typical Cloud Computing scenario

- A number of clients submit services to a provider
 - Think of services as commercial websites
- Services have hardware requirements (CPU, memory, I/O, ...)
- Clients express demands: for each service, enough CPU must be available (serve enough requests per second)

Optimization

- Several services can be allocated to the same Physical Machine (PM)
- Optimize energy and resource usage: consolidation
- Allocation of services onto PMs: MultiDimensional Bin Packing Problem

Introduction ○●○	Two-step heuristic	Experimental evaluation	Conclusio
Introducing ma	achine failures		

Data centers are large

- Failures will happen
- Our approach: over-provisioning allocate additional capacity
- Clients express a reliability requirement

expressed as a probability, or as a cost penalty

Assumptions

- Static setting over a given time period (between two migration phases):
 - Compute an allocation at the start of the period
 - During the time period, some machines fail
 - Services should still be running (enough instances) at the end
- Machines fail independently with probability f

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Problem	formulation		

Notations

- Identical machines, with capacity C and memory M
- *ns* services: demands d_i , reliability requirement r_i , memory m_i
- Variables A_{i,j}: CPU capacity for service i on machine j
- Alive_cpu_i = $\sum_{j=1}^{m} is_{alive_j} \times A_{i,j}$, where $is_{alive_j} = 0$ with prob. f

Formulation

n

$$\begin{array}{l} \text{inimize } m \text{ s.t. } \begin{cases} \forall i, \mathbb{P}\left(Alive_cpu_i < d_i\right) < r_i \\ \forall j, \sum_{A_{i,j} > 0} m_i \leq M \\ \forall j, \sum_{i=1}^{ns} A_{i,j} \leq C \end{cases}$$

伺き くほき くほき

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
—	1.1.1.1.1		
I wo-step	algorithm		

Load Balancing

Relaxed formulation to compute resource usage (CPU, memory) for each service so as to satisfy reliability constraints

2 Packing

Use column generation techniques to obtain a feasible packing

Introd	uction

First step: focus on reliability

Approximation by normal distribution

Given an allocation $A_{i,j}$, computing $\mathbb{P}(Alive_cpu_i < d_i)$ is #P-complete. (as hard as counting the # of solutions to a knapsack problem)

Introd	uction

First step: focus on reliability

Approximation by normal distribution

Given an allocation $A_{i,j}$, computing $\mathbb{P}(Alive_cpu_i < d_i)$ is **#P-complete**. $\mathbb{P}(Alive_cpu_i < d_i) < r_i$ is approx. by $\sum_{j=1}^m A_{i,j} - B_i \sqrt{\sum_{j=1}^m A_{i,j}^2} \ge K_i$

Introd	luction

First step: focus on reliability

Approximation by normal distribution

Given an allocation $A_{i,j}$, computing $\mathbb{P}(Alive_cpu_i < d_i)$ is **#P-complete**. $\mathbb{P}(Alive_cpu_i < d_i) < r_i$ is approx. by $\sum_{j=1}^m A_{i,j} - B_i \sqrt{\sum_{j=1}^m A_{i,j}^2} \ge K_i$

Relaxed formulation (lower bound)

minimize *m* s.t.

$$\begin{cases} \forall i, \sum_{j=1}^{m} A_{i,j} - B_i \sqrt{\sum_{j=1}^{m} A_{i,j}^2} \geq K_i \\ \sum_j \sum_{A_{i,j} > 0} m_i \leq mM \\ \sum_j \sum_{i=1}^{ns} A_{i,j} \leq mC \end{cases}$$

Introd	luction

First step: focus on reliability

Approximation by normal distribution

Given an allocation $A_{i,j}$, computing $\mathbb{P}(Alive_cpu_i < d_i)$ is **#P-complete**. $\mathbb{P}(Alive_cpu_i < d_i) < r_i$ is approx. by $\sum_{j=1}^m A_{i,j} - B_i \sqrt{\sum_{j=1}^m A_{i,j}^2} \ge K_i$

Relaxed formulation (lower bound)

minimize *m* s.t.

$$\begin{cases} \forall i, \sum_{j=1}^{m} A_{i,j} - B_i \sqrt{\sum_{j=1}^{m} A_{i,j}^2} \geq K_i \\ \sum_j \sum_{A_{i,j} > 0} m_i \leq mM \\ \sum_j \sum_{i=1}^{ns} A_{i,j} \leq mC \end{cases}$$

Homogeneous allocations are dominant $(A_{i,j} = A_i \text{ or } 0)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Introd	luction

First step: focus on reliability

Approximation by normal distribution

Given an allocation $A_{i,j}$, computing $\mathbb{P}(Alive_cpu_i < d_i)$ is #P-complete. $\mathbb{P}(Alive_cpu_i < d_i) < r_i$ is approx. by $\sum_{j=1}^m A_{i,j} - B_i \sqrt{\sum_{j=1}^m A_{i,j}^2} \ge K_i$

Relaxed formulation (lower bound)

$$\begin{cases} \forall i, \sqrt{n_i} > B_i \\ \sum_i n_i m_i \le mM \\ \sum_i \frac{\kappa_i}{1 - \frac{B_i}{\sqrt{n_i}}} \le mC \end{cases}$$

Can be solved for fractional n_i .

Homogeneous allocations are dominant $(A_{i,j} = A_i \text{ or } 0)$

(人間) とうり くうり

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Second step:	packing		

- Solve the homogeneous pb to get "ideal" allocations n_i , A_i
- "Pack" them onto individual machines

Remember the approximate formulation

minimize m s.

$$n \text{ s.t. } \begin{cases} \forall i, \sum_{j=1}^{m} A_{i,j} - B_i \sqrt{\sum_{j=1}^{m} A_{i,j}^2} \geq \\ \forall j, \sum_{A_{i,j} > 0} m_i \leq M \\ \forall j, \sum_{i=1}^{ns} A_{i,j} \leq C \end{cases}$$

K

"Splitting" a service always improves the first inequality

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Second step:	packing		

- Solve the homogeneous pb to get "ideal" allocations n_i , A_i
- "Pack" them onto individual machines

Remember the approximate formulation

$$\begin{cases} \forall i, \sum_{j=1}^{m} A_{i,j} - B_i \sqrt{\sum_{j=1}^{m} A_{i,j}^2} \ge K_i \\ \forall j, \sum_{A_{i,j}>0} m_i \le M \\ \forall j, \sum_{i=1}^{ns} A_{i,j} \le C \end{cases}$$

"Splitting" a service always improves the first inequality

Splittable bin packing with memory constraints

- Allocate $n_i A_i$ total capacity to service *i*
- Chunk of at most A; on each machine
- Each chunk uses *m_i* memory
- At most *M* memory used and *C* capacity per machine

→ Ξ → → Ξ →

roduction	duction Two-step heuristic			Experimental evaluation	Conclusion
D E	1.1.1	1.1	<i>c</i> •		

LP Formulation with configurations

Valid configuration C_c

- $\forall i$, fraction $x_{i,c}$ of the maximum capacity A_i devoted to service S_i
- c is valid iff $\sum_i x_{i,c} \leq C$ and $\sum_{x_{i,c}>0} m_i \leq M$
- Variable λ_c : number of machines with this configuration
- Almost full configurations are enough:

 $x_{i,c} = 1$ or 0 except for one service

Configuration formulation

$$\text{minimize } \sum_{c \in \mathcal{F}} \lambda_c \text{ st } \quad \forall i, \sum_{c \in \mathcal{F}} \lambda_c x_{i,c} \geq n_i \\ \end{cases}$$

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Column ger	neration		

Primal: minimize
$$\sum_{c \in \mathcal{F}} \lambda_c$$
 st $\forall i, \sum_{c \in \mathcal{F}} \lambda_c x_{i,c} \ge n_i$
Dual: maximize $\sum_i n_i p_i$ st $\forall c \in \mathcal{F}, \sum_i x_{i,c} p_i \le 1$

Principle: iteratively augment the set of configurations ${\cal F}$

- Start with a small set of configurations
- Solve the primal, get a sub-optimal solution
- Find a violated constraint in the dual (splittable knapsack)
- Add this configuration to the set and loop

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Splittable k	napsack		

Splittable knapsack problem

- Given A_i , m_i , p_i , M and C,
- Find J and x_i such that $\sum_{i \in J} m_i \leq M$, and $\sum_{i \in J} x_i A_i \leq C$
- So as to maximize $\sum_{i \in J} x_i p_i$

Properties

- Almost full configurations are dominant.
- NP-hard (from 2-Part)
- O(MC) Dynamic Programming algorithm to solve optimally.

Introduction	Two-step heuristic	Experimental evaluation	C
Summary			

nclusion

Two-step heuristic

ummai

- Compute a homogeneous lower bound n_i, A_i (binary search)
- Solve the packing problem
 - Start with a small set of configurations
 - Solve the primal, get a sub-optimal solution
 - Find a violated constraint in the dual (splittable knapsack)
 - Add this configuration to the set and loop

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
000		000	
Experimental ex	aluation		

Setting

• Memory and CPU usage from public Google trace 150 jobs account for 90% of resource usage

•
$$r_i = 10^{-X}$$
, with $X \simeq U(2,8)$

NoSharing heuristic

- Computes homogeneous allocations with $\forall i, A_i = C$
- Exactly one service per machine

Introduction 000	Two-step heuris			Experimental evaluation ○●○	Conclusion
Experimental	results:	number	of m	achines	

Running time of ColumnGeneration: mean 14.6s, max 22.2s

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Experimental r	esults: evecution t	ime	

590

문 🕨 문

Introduction	Two-step heuristic	Experimental evaluation	Conclusion
Conclusions			

Explored allocation problems with reliability constraints

- Binomial approximation allows a good lower bound
- Reformulations & column generation give good heuristics

Further directions

- Extensions: multi-dimensional (CPU + IO), heterogeneous machines, \dots
- Migrations for dynamic setting
- Recycle the techniques for other problems