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Matrix Multiplication - SUMMA
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SUMMA algorithm, broadcast columns of A and rows of B, shown
using column based data partition for 9 heterogeneous processors
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Data Partition Shapes

Data Partitioning

Traditional data partitioning for matrix multiplications
generally assigns a rectangular submartrix to each processor

Clearly optimal for homogeneous systems

Current data partitioning for heterogeneous systems has been
adapted from homogeneous algorithms

What is the optimal shape for heterogeneous systems? Could
it be non-rectangular?
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Modelling MMM - Assumptions

Define the problem,

Computation

Each Matrix A, B, C is square and identically partitioned

Each Processor has a defined computation speed, expressed as
a ratio Pr : 1 (2 processor) or Pr : Rr : 1 (3 processor), and
overall speed T = Pr +Rr + 1

Modelled by kij algorithm (like SUMMA)

Communication

Modelled by Hockney, α+ β ×M
Each Processor communicates with other processors, and all
links are of the same speed
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MMM Algorithm Description
Execution Time: Communication and Computation

Serial Communication with Barrier: All serial communication first,
then computation
Parallel Communication with Barrier: All parallel communication
first, then computation
Serial Communication with Overlap: Serial communication and
any computation not requiring communication first, then remaining
computation
Parallel Communication with Overlap: Parallel communication
and any computation not requiring communication first, then
remaining computation
Parallel Interleaving Overlap: Communication and computation
overlapped in k steps (compute k, send k + 1)

Note for each algorithm, decreasing the volume of communication also
decreases (or leaves unchanged) the execution time
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Searching for Candidate Partition Shapes

Motivation: We believe that optimal shapes should be condensed,
i.e. not random, arbitrary arrangements of elements
Goal: Find a small number of shapes, candidates, which no
arrangement of elements can be superior to

Push Technique

Act on elements of a single processor, Q, in a single row or
column, k

Re-assign elements of Q into rows and columns other than k

Follow rules in reassignment which guarantee lower or same
total volume of communication
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Push in Two Processor System

Two Processor Example

Push elements of slower processor, incrementally improving the
volume of communication with each step
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Optimal Candidates for Two Processors

Proved analytically that no shape is superior to the Straight Line
and the Square Corner, these are the optimal candidates

Straight Line Square Corner
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Optimal Shape for Two Processors

Straight Line
Square Corner

Analyse using 5
MMM

algorithms

Square Corner Optimality

Serial Communication with Barrier:
For processor ratios greater than 3 : 1

Parallel Communication with Barrier:
For processor ratios greater than 3 : 1

Serial Communication with Overlap:
For all processor ratios

Parallel Communication with Overlap:
For all processor ratios

Parallel Interleaving Overlap: For
processor ratios greater than 3 : 1
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Finding Partition Shapes in Three Processor System

Three Processor Push

Push elements of slower processor, incrementally improving the
volume of communication with each step
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Finding Partition Shapes in Three Processor System

Three Processor Push

Push elements of next slowest processor, incrementally improving
the volume of communication with each step
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Convergence - DFA Program

Three Processor Challenges

Two Processor Push can be mathematically shown to always
converge to recognisable shapes

Three Processor Push is more complex

Consider legality of moving both processors, not simply the
active processor being Pushed

Must show that Three Processor Push always forms some
recognisable shape

Use a hybrid of analytical and experimental approaches to
convince ourselves this is possible
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DFA Program Definition

Present problem as a Deterministic Finite Automaton,
(Q,Σ, δ, q0, F )

Q - the finite set of states, possible data partition shapes

Σ - the finite set of the alphabet, the processors and
directions of Push

δ - Q× Σ→ Q, the transition function, the Push operation

q0 - the start state, chosen at random

F - F ⊆ Q, the accept states, candidates to be the optimum
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Postulate 1 - Three Processor Push

There exists no arrangement of elements among three
heterogeneous processors in an N ×N matrix which cannot be
improved with the Push operation, except those arrangements of
shapes defined as Archetypes A, B, C and D.

A. DeFlumere and A. Lastovetsky Optimal MMM Shape on 2 and 3 Heterogenous Processors



Introduction
Push Technique
Two Processors

Three Processors
Conclusion

Analysis

Four Shape Archetypes

Categorised by Enclosing Rectangles and number of Corners
Archetype A: Slower processors have non-overlapping enclosing
rectangles
Archetype B: Slower processors have partially overlapping enclosing
rectangles, (1 extra corner)
Archetype C: Slower processors have partially overlapping enclosing
rectangles, (more than 1 extra corner)
Archetype D: Enclosing rectangle of one slower processor complete
surrounds the other

A B C D 
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Experimental Setup

Set N = 1000, use variety of ratios of Pr : Rr : Sr

Run DFA program minimum 10,000 times per processor ratio
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Shape Archetypes

Reducing all Archetypes to Archetype A

B → A: A non-Push transformation, guaranteed not to raise
volume of communication

C → A: Execute Push operations in direction(s) not chosen
randomly by DFA program (no example found where Push
was not possible)

D → A: A non-Push transformation, guaranteed not to raise
volume of communication
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Three Processor Candidate Shapes
Archetype A has many constituent partition shapes, we create a canonical
form for each:

(1) Square Corner (2) Rectangle Corner (3) Square Rectangle 

(4) Block Rectangle (5) L Rectangle (6) Traditional Rectangle 
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Three Processor Candidate Shapes
Proved analytically that three are superior to others, and should be
analysed further:

(1) Square Corner (2) Rectangle Corner (3) Square Rectangle 

(4) Block Rectangle (5) L Rectangle (6) Traditional Rectangle 
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Detailed Analysis for Three Fully Connected Processors
Optimal Shapes by MMM Algorithm

Serial Communication with Barrier:
Square Corner : Pr < 2T − 2

√
RrT − 2

√
T

Rectangle Corner : Pr < T − 2
√
T

Block Rectangle Otherwise

Parallel Communication with Barrier:
Square Corner : Pr > 2(

√
RrT −Rr +

√
T − 1)

Rectangle Corner : Pr < 2Rr + Rr√
T
− 2
√
T − 1

Block Rectangle Otherwise

Serial Communication with Overlap:
Square Corner :

Pr > 2 c
N (
√
RrT +

√
T ) + 2T (r − r2 − r2√

Rr
+ r√

Rr
− r2

Rr
)− Tc

N −
2c
N

√
T

Rectangle Corner : Pr < T − 2
√
T

Block Rectangle Otherwise

Parallel Communication with Overlap:

Square Rectangle : Pr <
1+ 2√

T
−Rr

T −
Rr

T
√

T
− 3

T −2r
2

N( r2

cRr
− 1

Tc )

Square Corner Otherwise

Parallel Interleaving Overlap:
Block Rectangle : Pr < 4

√
T

Square Corner Otherwise
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Optimal Shape for Three Processor
Summary of Analysis

Square Corner Optimality

Optimal for systems with 1 fast processor, and two
relatively slow processors

Square Rectangle Optimality - (A Shape Never
Considered Before)

Optimal for systems with 2 fast processors, and one
relatively slow processor

Block Rectangle Optimality

Optimal for systems with 1 fast, 1 medium and 1 slow
processor, as well as relatively homogeneous systems
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Three Processor Experimental Results

Serial Communication with Barrier
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Three Processor Experimental Results

Parallel Communication with Barrier
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Thank You

A. DeFlumere and A. Lastovetsky Optimal MMM Shape on 2 and 3 Heterogenous Processors


	Introduction
	Push Technique
	Two Processors
	Three Processors
	Conclusion

