The Optimal Partitioning Shapes for Parallel Matrix Computation on Two and Three Heterogeneous Processors

Ashley DeFlumere, Alexey Lastovetsky

Heterogeneous Computing Laboratory, University College Dublin, Ireland

Matrix Multiplication - SUMMA

k

А

В

SUMMA algorithm, broadcast columns of A and rows of B, shown using column based data partition for 9 heterogeneous processors

Data Partition Shapes

Data Partitioning

- Traditional data partitioning for matrix multiplications generally assigns a rectangular submartrix to each processor
- Clearly optimal for homogeneous systems
- Current data partitioning for heterogeneous systems has been adapted from homogeneous algorithms
- What is the optimal shape for heterogeneous systems? Could it be non-rectangular?

Modelling MMM - Assumptions

Define the problem,

Computation

- Each Matrix A, B, C is square and identically partitioned
- Each Processor has a defined computation speed, expressed as a ratio $P_r: 1$ (2 processor) or $P_r: R_r: 1$ (3 processor), and overall speed $T = P_r + R_r + 1$
- Modelled by *kij* algorithm (like SUMMA)

Modelling MMM - Assumptions

Define the problem,

Computation

- Each Matrix A, B, C is square and identically partitioned
- Each Processor has a defined computation speed, expressed as a ratio $P_r: 1$ (2 processor) or $P_r: R_r: 1$ (3 processor), and overall speed $T = P_r + R_r + 1$
- Modelled by *kij* algorithm (like SUMMA)

Communication

- \bullet Modelled by Hockney, $\alpha+\beta\times M$
- Each Processor communicates with other processors, and all links are of the same speed

MMM Algorithm Description

Execution Time: Communication and Computation

- Serial Communication with Barrier: All serial communication first, then computation
- Parallel Communication with Barrier: All parallel communication first, then computation
- Serial Communication with Overlap: Serial communication and any computation not requiring communication first, then remaining computation
- **Parallel Communication with Overlap:** Parallel communication and any computation not requiring communication first, then remaining computation
- **Parallel Interleaving Overlap:** Communication and computation overlapped in k steps (compute k, send k + 1)

Note for each algorithm, decreasing the volume of communication also decreases (or leaves unchanged) the execution time

Searching for Candidate Partition Shapes

Motivation: We believe that optimal shapes should be condensed, *i.e.* not random, arbitrary arrangements of elements **Goal:** Find a small number of shapes, candidates, which no arrangement of elements can be superior to

Push Technique

- \bullet Act on elements of a single processor, Q, in a single row or column, k
- $\bullet\,$ Re-assign elements of Q into rows and columns other than k
- Follow rules in reassignment which guarantee lower or same total volume of communication

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Push in Two Processor System

Two Processor Example

Optimal Candidates for Two Processors

Proved analytically that no shape is superior to the Straight Line and the Square Corner, these are the optimal candidates

Optimal Shape for Two Processors

Straight Line Square Corner

Analyse using 5 MMM algorithms

Square Corner Optimality

- Serial Communication with Barrier: For processor ratios greater than 3:1
- Parallel Communication with Barrier: For processor ratios greater than 3:1
- Serial Communication with Overlap: For all processor ratios
- Parallel Communication with Overlap: For all processor ratios
- **Parallel Interleaving Overlap:** For processor ratios greater than 3 : 1

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Finding Partition Shapes in Three Processor System

Three Processor Push

Convergence - DFA Program

Three Processor Challenges

- Two Processor Push can be mathematically shown to always converge to recognisable shapes
- Three Processor Push is more complex
- Consider legality of moving both processors, not simply the active processor being Pushed
- Must show that Three Processor Push always forms some recognisable shape
- Use a hybrid of analytical and experimental approaches to convince ourselves this is possible

DFA Program Definition

- \bullet Present problem as a Deterministic Finite Automaton, (Q,Σ,δ,q_0,F)
- $\bullet \ Q$ the finite set of states, possible data partition shapes
- Σ the finite set of the alphabet, the processors and directions of Push
- δ $Q \times \Sigma \to Q,$ the transition function, the Push operation
- \bullet q_0 the start state, chosen at random
- $\bullet\ F$ $F\subseteq Q$, the accept states, candidates to be the optimum

Postulate 1 - Three Processor Push

There exists no arrangement of elements among three heterogeneous processors in an $N \times N$ matrix which cannot be improved with the Push operation, except those arrangements of shapes defined as Archetypes A, B, C and D.

Introduction Push Technique Two Processors Three Processors Conclusion The technique transmission and the technique technique

Analysis

Four Shape Archetypes

- Categorised by Enclosing Rectangles and number of Corners
- Archetype A: Slower processors have non-overlapping enclosing rectangles
- Archetype B: Slower processors have partially overlapping enclosing rectangles, (1 extra corner)
- Archetype C: Slower processors have partially overlapping enclosing rectangles, (more than 1 extra corner)
- Archetype D: Enclosing rectangle of one slower processor complete surrounds the other

Deliver Total Carl of Carl (1981

Experimental Setup

- Set N = 1000, use variety of ratios of $P_r : R_r : S_r$
- Run DFA program minimum 10,000 times per processor ratio

Shape Archetypes

Reducing all Archetypes to Archetype A

- $\bullet~B\to A$: A non-Push transformation, guaranteed not to raise volume of communication
- $\mathbf{C} \rightarrow \mathbf{A}$: Execute Push operations in direction(s) not chosen randomly by DFA program (no example found where Push was not possible)
- $\bullet~ D \to A$: A non-Push transformation, guaranteed not to raise volume of communication

stight but that i the

Three Processor Candidate Shapes

Archetype A has many constituent partition shapes, we create a canonical form for each:

Three Processor Candidate Shapes

Proved analytically that three are superior to others, and should be analysed further:

Detailed Analysis for Three Fully Connected Processors

Optimal Shapes by MMM Algorithm

• Serial Communication with Barrier:

- Square Corner : $P_r < 2T 2\sqrt{R_rT} 2\sqrt{T}$
- Rectangle Corner : $P_r < T 2\sqrt{T}$
- Block Rectangle Otherwise

• Parallel Communication with Barrier:

- Square Corner : $P_r > 2(\sqrt{R_rT} R_r + \sqrt{T} 1)$
- Rectangle Corner : $P_r < 2R_r + \frac{R_r}{\sqrt{T}} 2\sqrt{T} 1$
- Block Rectangle Otherwise

• Serial Communication with Overlap:

• Square Corner :

$$P_r > 2\frac{c}{N}(\sqrt{R_rT} + \sqrt{T}) + 2T(r - r^2 - \frac{r^2}{\sqrt{R_r}} + \frac{r}{\sqrt{R_r}} - \frac{r^2}{R_r}) - \frac{Tc}{N} - \frac{2c}{N}\sqrt{T}$$

- Rectangle Corner : $P_r < T 2\sqrt{T}$
- Block Rectangle Otherwise

• Parallel Communication with Overlap:

- Square Rectangle : $P_r < \frac{1+\frac{2}{\sqrt{T}}-\frac{R_r}{T}-\frac{R_r}{T\sqrt{T}}-\frac{3}{T}-2r^2}{N(\frac{r^2}{cR_r}-\frac{1}{T_c})}$
- Square Corner Otherwise
- Parallel Interleaving Overlap:
 - Block Rectangle : $P_r < 4\sqrt{T}$
 - Square Corner Otherwise

Optimal Shape for Three Processor

Summary of Analysis

Square Corner Optimality

Optimal for systems with 1 fast processor, and two relatively slow processors

Square Rectangle Optimality - (A Shape Never Considered Before)

Optimal for systems with 2 fast processors, and one relatively slow processor

Block Rectangle Optimality

Optimal for systems with 1 fast, 1 medium and 1 slow processor, as well as relatively homogeneous systems

A. DeFlumere and A. Lastovetsky

Optimal MMM Shape on 2 and 3 Heterogenous Processors

Three Processor Experimental Results

Serial Communication with Barrier

Three Processor Experimental Results

Parallel Communication with Barrier

Thank You

A. DeFlumere and A. Lastovetsky Optimal MMM Shape on 2 and 3 Heterogenous Processors