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Online Bin Packing

Given an instance It = {i1, . . . it} of items for each time t ∈ N and
a function s : I =

⋃
t It → [0, 1].

Find for each t ∈ N an assignment Bt : {i1, . . . , it} → N+ such
that

∑
i :Bt(i)=j s(i) ≤ 1 for all j .

Goal: Minimize the number of bins maxi {Bt(i)} for each time t.



Competitive Ratio of Online Bin Packing

Best known algorithm: Ratio of 1.58889 (S.S. Seiden, 2002)

Best known lower bound: Ratio of 1.54037 (J. Balogh, B. Jozsef,
and G. Galambos, 2010)



Offline Bin Packing

APTAS:
Approximation guarantee: (1 + ε)OPT + 1
Running time: poly(n) + f (1/ε) (W. Fernandez de la Vega and
G.S. Lueker, 1981)

AFPTAS:
Approximation guarantee: (1 + ε)OPT + O(1/ε2)
Running time: poly(n, 1/ε) (N. Karmarkar and R.M. Karp, 1982)



Repacking

Online Bin Packing with Repacking
Ratio 1.33 repacking 7 items (G. Gambosi et al., 2000)
Ratio 1.25 repacking O(log t) "shifting moves" (Z. Ivkovic
and E.L. Lloyd, 1998)
Ratio 1 + ε repacking amortized O(log t) "shifting moves" (Z.
Ivkovic and E.L. Lloyd, 1997)

Online Scheduling: Achieving ratio < 1.4659 requires repacking of
Θ(t) jobs (S. Albers and M. Hellwig, 2012)



Repacking

Online Bin Packing with Repacking
Ratio 1.33 repacking 7 items (G. Gambosi et al., 2000)
Ratio 1.25 repacking O(log t) "shifting moves" (Z. Ivkovic
and E.L. Lloyd, 1998)
Ratio 1 + ε repacking amortized O(log t) "shifting moves" (Z.
Ivkovic and E.L. Lloyd, 1997)

Online Scheduling: Achieving ratio < 1.4659 requires repacking of
Θ(t) jobs (S. Albers and M. Hellwig, 2012)



Migration

Migration Factor between Bt and Bt+1

1
s(it+1)

∑
j≤t:Bt(ij )6=Bt+1(ij )

s(ij)

An algorithm is robust if the migration factor is bounded by a
function f (1/ε). (P. Sanders, N. Sivadasan and M. Skutella, 2004).



Questions:

Can we achieve approximation guarantee:
(1 + ε)OPT + g(1/ε) with migration f (1/ε)?

1 YES Online Scheduling on identical machines (P. Sanders, N.
Sivadasan, and M. Skutella, 2004)

Mf: 2O(1/ε log2(1/ε))

2 YES Online Bin Packing (L. Epstein and A. Levin, 2006)

Mf:
2O(1/ε2 log(1/ε))

3 YES and NO Online Machine Covering (M. Skutella and J.
Verschae 2010)

amortized Mf: 2O(1/ε log2(1/ε)

Can we achieve polynomial migration and polynomial running
time?
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Our Result for Online Bin Packing:
Approximation scheme with running time poly(t, 1/ε) and
migration factor poly(1/ε).
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Sensitivity Analysis

Goal
Let y ′ be an optimum ILP solution of min {‖x‖1 |Ax ≥ b′, x ≥ 0}.
Find an optimum ILP solution y ′′ of min {‖x‖1 |Ax ≥ b′′, x ≥ 0}
such that ‖y ′′ − y ′‖∞ is small.

Theorem (Cook et al., 1986): There exists an optimum ILP
solution y ′′ with ‖y ′′ − y ′‖∞ ≤ n∆(‖b′′ − b′‖∞ + 2).

Problem: The number of variables n and the largest
subdeterminant ∆ can only bounded by an exponential term in 1/ε.
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Theorem
Consider the LP min {‖x‖1 |Ax ≥ b, x ≥ 0} with A ∈ Rm×n

≥0 and
let x ′ be an approximate fractional solution with
‖x ′‖1 ≤ (1 + δ)OPT for δ > 0 and ‖x ′‖1 ≥ α(1

δ + 1).

Then there exists a solution x ′′ with ‖x ′′‖1 ≤ (1 + δ)OPT − α and
‖x ′ − x ′′‖1 ≤ 2α (1/δ + 1).
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Prove the feasibility of the following linear program:

Ax ≥ b
x ≥ 0∑
xi ≤ (1 + δ)OPT − α

x ≥ x ′ − α(1/δ + 1) x ′
‖x ′‖1

x ≤ x ′ + α(1/δ + 1)xOPT

‖x ′‖1

A feasible solution is x ′′ = (1− α(1/δ+1)
‖x ′‖1

)x ′ + α(1/δ+1)
‖x ′‖1

xOPT .
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Algorithm
Let x ′ be a LP solution with ‖x ′‖ ≤ (1 + δ)OPT and
‖x ′‖ ≥ α(1/δ + 1).

Set xfix := x ′ − α(1/δ+1)
‖x ′‖1

x ′ and bvar := b − A(xfix )
Solve the LP x̂ = min {‖x‖1 |Ax ≥ bvar , x ≥ 0}
Generate a new solution x ′′ = xfix + x̂

The algorithm returns a feasible LP solution x ′′ with
‖x ′′‖1 ≤ (1 + δ)OPT − α and distance ‖x ′′ − x ′‖1 ≤ 2α(1/δ + 1).



Algorithm
Let x ′ be a LP solution with ‖x ′‖ ≤ (1 + δ)OPT and
‖x ′‖ ≥ α(1/δ + 1).

Set xfix := x ′ − α(1/δ+1)
‖x ′‖1

x ′ and bvar := b − A(xfix )
Solve the LP x̂ = min {‖x‖1 |Ax ≥ bvar , x ≥ 0}
Generate a new solution x ′′ = xfix + x̂

The algorithm returns a feasible LP solution x ′′ with
‖x ′′‖1 ≤ (1 + δ)OPT − α and distance ‖x ′′ − x ′‖1 ≤ 2α(1/δ + 1).



Improve Packing:

Let Bt be a packing of instance It with maxi Bt(i) ≤ (1 + δ)OPT .

Find a packing B′t with maxi B′t(i) ≤ (1 + δ)OPT − 1 such that
migration factor between Bt and B′t is small.
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What are the remaining problems:

Keep the number of non-zero components small

Avoid calculation of optimum LP solutions
Dynamic rounding technique
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Main Result
We obtain a fully robust AFPTAS for the online bin packing
problem with migration factor O(1/ε4) and running time
O(M(1/ε2)1/ε4 + εt + 1/ε2 log(ε2t)).



Open Questions:

Smaller migration factor and running time
Lower bounds for migration factor
Dynamic bin packing (allow departing of items)
Use LP-techniques for other online problems

Thank you!
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