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Online Bin Packing

Given an instance Iy = {i1,... i} of items for each time ¢t € N and
a function s: I =, I — [0, 1].

Find for each t € N an assignment B; : {i1,..., it} — Nt such
that >7;.p,(j)=j s(i) < 1 for all j.

Goal: Minimize the number of bins max; { B(i)} for each time t.



Competitive Ratio of Online Bin Packing

Best known algorithm: Ratio of 1.58889 (S.S. Seiden, 2002)

Best known lower bound: Ratio of 1.54037 (J. Balogh, B. Jozsef,
and G. Galambos, 2010)



Offline Bin Packing

APTAS:

Approximation guarantee: (1 + ¢)OPT +1

Running time: poly(n) + f(1/¢) (W. Fernandez de la Vega and
G.S. Lueker, 1981)

AFPTAS:
Approximation guarantee: (14 ¢)OPT + O(1/¢?)
Running time: poly(n,1/¢) (N. Karmarkar and R.M. Karp, 1982)



Repacking

Online Bin Packing with Repacking

e Ratio 1.33 repacking 7 items (G. Gambosi et al., 2000)

@ Ratio 1.25 repacking O(log t) "shifting moves" (Z. Ivkovic
and E.L. Lloyd, 1998)

@ Ratio 1 + € repacking amortized O(log t) "shifting moves" (Z.
Ivkovic and E.L. Lloyd, 1997)



Repacking

Online Bin Packing with Repacking

e Ratio 1.33 repacking 7 items (G. Gambosi et al., 2000)

@ Ratio 1.25 repacking O(log t) "shifting moves" (Z. Ivkovic
and E.L. Lloyd, 1998)

@ Ratio 1 + € repacking amortized O(log t) "shifting moves" (Z.
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Online Scheduling: Achieving ratio < 1.4659 requires repacking of
©(t) jobs (S. Albers and M. Hellwig, 2012)



Migration

Migration Factor between B; and B;.;
1 .
> s(i)

s(ie+1) J<tBe(if)#Bea (i)

An algorithm is robust if the migration factor is bounded by a
function f(1/¢€). (P. Sanders, N. Sivadasan and M. Skutella, 2004).
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Questions:

@ Can we achieve approximation guarantee:
(14 €)OPT + g(1/¢) with migration f(1/¢€)?

o Online Scheduling on identical machines (P. Sanders, N.
Sivadasan, and M. Skutella, 2004) Mf: 200/ log?(1/¢))

Q Online Bin Packing (L. Epstein and A. Levin, 2006) Mf:
20(1/€ log(1/e))

Q and Online Machine Covering (M. Skutella and J.
Verschae 2010) amortized Mf: 20(1/clog’(1/<)

@ Can we achieve polynomial migration and polynomial running
time?



Our Result for Online Bin Packing:

Approximation scheme with running time poly(t,1/¢) and
migration factor poly(1/e).
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Sensitivity Analysis

Goal

Let y’ be an optimum ILP solution of min {||x||; |[Ax > b’,x > 0}.
Find an optimum ILP solution y” of min {||x||; |[Ax > b”,x > 0}
such that ||y” — y/|| ., is small.

Theorem (Cook et al., 1986): There exists an optimum ILP
solution y” with ||y” — y'||o < nA(]|b" — b'||, + 2).

Problem: The number of variables n and the largest
subdeterminant A can only bounded by an exponential term in 1/e.



Theorem

Consider the LP min {||x||; |Ax > b,x > 0} with A € Rgén and
let x' be an approximate fractional solution with
X[l < (1+8)OPT for § >0 and ||x'||; > a(} +1).



Theorem

Consider the LP min {||x||; |Ax > b,x > 0} with A € RZJ" and
let x' be an approximate fractional solution with -

x|, < (1+6)OPT for§ >0 and ||x'||; > a( +1).

Then there exists a solution x" with ||x"||; < (1 +0)OPT — « and
X" = x"[ly < 2(1/6 +1).
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Prove the feasibility of the following linear program:

Ax > b
x>0
> xi < (1+6)OPT -«
/
x>x —a(l/6+ 1)|| P
oPT

x <x' +a(1/6 + 1)Xf
X1l

A feasible solution is x” = (1 — a(l/,+1))x’ + 205 H)  OPT,

X1l [BYI!




Let x’ be a LP solution with ||x'|| < (1 + §)OPT and
X'l = 1/ +1).
o Set x™ = x' - a(IK’élltl) x" and b := b — A(x™)

@ Solve the LP X = min {||x||; |[Ax > b*¥",x > 0}

e Generate a new solution x" = x™ + %




Algorithm
Let x’ be a LP solution with ||x'|| < (1 + §)OPT and
X'l = 1/ +1).

o Set x™ = x' - a(IK’élltl) x" and b := b — A(x™)

@ Solve the LP X = min {||x||; |[Ax > b*¥",x > 0}

e Generate a new solution x" = x™ + %

The algorithm returns a feasible LP solution x” with
Ix"]l; < (1+6)OPT — « and distance ||x” — x'||; < 2a(1/6 + 1).



Improve Packing:

Let B; be a packing of instance /; with max; B:(i) < (1 + §)OPT.

Find a packing B; with max; By(i) < (1+ 6)OPT — 1 such that
migration factor between B; and B is small.
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b ="l [

=0(1/e)

[ LP solution x’ J LP solution x” ]

—) Iy "l —
ILP solution y ILP solution y
= O(m/e)

rounding rounding

Packing B;: Improved packing B
for instance /; for instance /;
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What are the remaining problems:

@ Keep the number of non-zero components small
@ Avoid calculation of optimum LP solutions

@ Dynamic rounding technique



Main Result

We obtain a fully robust AFPTAS for the online bin packing
problem with migration factor O(1/€*) and running time
O(M(1/€?)1/e* + et + 1/€®log(€t)).
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