A Robust AFPTAS for Online Bin Packing with Polynomial Migration

Klaus Jansen Kim-Manuel Klein

University of Kiel

July 2, 2014

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへの

▲□▶▲□▶▲目▶▲目▶ 目 のへの

Given an instance $I_t = \{i_1, \dots, i_t\}$ of items for each time $t \in \mathbb{N}$ and a function $s : I = \bigcup_t I_t \to [0, 1]$.

Find for each $t \in \mathbb{N}$ an assignment $B_t : \{i_1, \ldots, i_t\} \to \mathbb{N}^+$ such that $\sum_{i:B_t(i)=j} s(i) \leq 1$ for all j.

Goal: Minimize the number of bins $\max_i \{B_t(i)\}\$ for each time t.

Competitive Ratio of Online Bin Packing

Best known algorithm: Ratio of 1.58889 (S.S. Seiden, 2002)

Best known lower bound: Ratio of 1.54037 (J. Balogh, B. Jozsef, and G. Galambos, 2010)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

APTAS: Approximation guarantee: $(1 + \epsilon)OPT + 1$ Running time: poly $(n) + f(1/\epsilon)$ (W. Fernandez de la Vega and G.S. Lueker, 1981)

AFPTAS:

Approximation guarantee: $(1 + \epsilon)OPT + O(1/\epsilon^2)$ Running time: $poly(n, 1/\epsilon)$ (N. Karmarkar and R.M. Karp, 1982)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Repacking

Online Bin Packing with Repacking

- Ratio 1.33 repacking 7 items (G. Gambosi et al., 2000)
- Ratio 1.25 repacking O(log t) "shifting moves" (Z. lvkovic and E.L. Lloyd, 1998)
- Ratio $1 + \epsilon$ repacking amortized $O(\log t)$ "shifting moves" (Z. lvkovic and E.L. Lloyd, 1997)

Repacking

Online Bin Packing with Repacking

- Ratio 1.33 repacking 7 items (G. Gambosi et al., 2000)
- Ratio 1.25 repacking O(log t) "shifting moves" (Z. lvkovic and E.L. Lloyd, 1998)
- Ratio $1 + \epsilon$ repacking amortized $O(\log t)$ "shifting moves" (Z. lvkovic and E.L. Lloyd, 1997)

Online Scheduling: Achieving ratio < 1.4659 requires repacking of $\Theta(t)$ jobs (S. Albers and M. Hellwig, 2012)

Migration

Migration Factor between B_t and B_{t+1} $\frac{1}{s(i_{t+1})} \sum_{j \le t: B_t(i_j) \ne B_{t+1}(i_j)} s(i_j)$

An algorithm is *robust* if the migration factor is bounded by a function $f(1/\epsilon)$. (P. Sanders, N. Sivadasan and M. Skutella, 2004).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Can we achieve approximation guarantee: $(1 + \epsilon)OPT + g(1/\epsilon)$ with migration $f(1/\epsilon)$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Can we achieve approximation guarantee: $(1 + \epsilon)OPT + g(1/\epsilon)$ with migration $f(1/\epsilon)$?
 - YES Online Scheduling on identical machines (P. Sanders, N. Sivadasan, and M. Skutella, 2004)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Can we achieve approximation guarantee: $(1 + \epsilon)OPT + g(1/\epsilon)$ with migration $f(1/\epsilon)$?
 - YES Online Scheduling on identical machines (P. Sanders, N. Sivadasan, and M. Skutella, 2004)

YES Online Bin Packing (L. Epstein and A. Levin, 2006)

- Can we achieve approximation guarantee: $(1 + \epsilon)OPT + g(1/\epsilon)$ with migration $f(1/\epsilon)$?
 - YES Online Scheduling on identical machines (P. Sanders, N. Sivadasan, and M. Skutella, 2004)
 - YES Online Bin Packing (L. Epstein and A. Levin, 2006)
 - YES and NO Online Machine Covering (M. Skutella and J. Verschae 2010)

- Can we achieve approximation guarantee: $(1 + \epsilon)OPT + g(1/\epsilon)$ with migration $f(1/\epsilon)$?
 - YES Online Scheduling on identical machines (P. Sanders, N. Sivadasan, and M. Skutella, 2004) Mf: 2^{O(1/ε log²(1/ε))}
 - YES Online Bin Packing (L. Epstein and A. Levin, 2006) Mf: 2^O(1/e² log(1/e))
 - YES and NO Online Machine Covering (M. Skutella and J. Verschae 2010) amortized Mf: 2^{O(1/ε log²(1/ε)}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Can we achieve approximation guarantee: $(1 + \epsilon)OPT + g(1/\epsilon)$ with migration $f(1/\epsilon)$?
 - YES Online Scheduling on identical machines (P. Sanders, N. Sivadasan, and M. Skutella, 2004) Mf: 2^{O(1/ε log²(1/ε))}
 - YES Online Bin Packing (L. Epstein and A. Levin, 2006) Mf: 2^O(1/e² log(1/e))
 - YES and NO Online Machine Covering (M. Skutella and J. Verschae 2010) amortized Mf: 2^{O(1/ε log²(1/ε)}
- Can we achieve polynomial migration and polynomial running time?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Our Result for Online Bin Packing:

Approximation scheme with running time $poly(t, 1/\epsilon)$ and migration factor $poly(1/\epsilon)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Overview Robust Algorithms

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Overview Robust Algorithms

・ロト・日本・日本・日本・日本・日本

Sensitivity Analysis

Goal

Let y' be an optimum ILP solution of min $\{||x||_1 | Ax \ge b', x \ge 0\}$. Find an optimum ILP solution y'' of min $\{||x||_1 | Ax \ge b'', x \ge 0\}$ such that $||y'' - y'||_{\infty}$ is small.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sensitivity Analysis

Goal

Let y' be an optimum ILP solution of min $\{||x||_1 | Ax \ge b', x \ge 0\}$. Find an optimum ILP solution y'' of min $\{||x||_1 | Ax \ge b'', x \ge 0\}$ such that $||y'' - y'||_{\infty}$ is small.

A D N A 目 N A E N A E N A B N A C N

Theorem (Cook et al., 1986): There exists an optimum ILP solution y'' with $||y'' - y'||_{\infty} \le n\Delta(||b'' - b'||_{\infty} + 2)$.

Sensitivity Analysis

Goal

Let y' be an optimum ILP solution of min $\{||x||_1 | Ax \ge b', x \ge 0\}$. Find an optimum ILP solution y'' of min $\{||x||_1 | Ax \ge b'', x \ge 0\}$ such that $||y'' - y'||_{\infty}$ is small.

Theorem (Cook et al., 1986): There exists an optimum ILP solution y'' with $||y'' - y'||_{\infty} \le n\Delta(||b'' - b'||_{\infty} + 2)$.

Problem: The number of variables *n* and the largest subdeterminant Δ can only bounded by an exponential term in $1/\epsilon$.

A D N A 目 N A E N A E N A B N A C N

Theorem

Consider the LP min { $||x||_1 | Ax \ge b, x \ge 0$ } with $A \in \mathbb{R}_{\ge 0}^{m \times n}$ and let x' be an approximate fractional solution with $||x'||_1 \le (1+\delta)OPT$ for $\delta > 0$ and $||x'||_1 \ge \alpha(\frac{1}{\delta}+1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

Consider the LP min { $||x||_1 | Ax \ge b, x \ge 0$ } with $A \in \mathbb{R}_{\ge 0}^{m \times n}$ and let x' be an approximate fractional solution with $||x'||_1 \le (1+\delta)OPT$ for $\delta > 0$ and $||x'||_1 \ge \alpha(\frac{1}{\delta}+1)$. Then there exists a solution x'' with $||x''||_1 \le (1+\delta)OPT - \alpha$ and $||x' - x''||_1 \le 2\alpha(1/\delta + 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Prove the feasibility of the following linear program:

$$\begin{aligned} Ax &\geq b \\ x &\geq 0 \\ \sum x_i &\leq (1+\delta)OPT - \alpha \\ x &\geq x' - \alpha(1/\delta+1)\frac{x'}{\|x'\|_1} \\ x &\leq x' + \alpha(1/\delta+1)\frac{x^{OPT}}{\|x'\|_1} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Prove the feasibility of the following linear program:

$$Ax \ge b$$

$$x \ge 0$$

$$\sum x_i \le (1+\delta)OPT - \alpha$$

$$x \ge x' - \alpha(1/\delta + 1)\frac{x'}{\|x'\|_1}$$

$$x \le x' + \alpha(1/\delta + 1)\frac{x^{OPT}}{\|x'\|_1}$$

A feasible solution is $x'' = (1 - \frac{\alpha(1/\delta+1)}{\|x'\|_1})x' + \frac{\alpha(1/\delta+1)}{\|x'\|_1}x^{OPT}$.

Algorithm

Let x' be a LP solution with $||x'|| \le (1+\delta)OPT$ and $||x'|| \ge \alpha(1/\delta + 1)$.

• Set
$$x^{fix} := x' - \frac{\alpha(1/\delta+1)}{\|x'\|_1} x'$$
 and $b^{var} := b - A(x^{fix})$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

• Solve the LP
$$\hat{x} = \min \{ \|x\|_1 | Ax \ge b^{var}, x \ge 0 \}$$

• Generate a new solution $x'' = x^{fix} + \hat{x}$

Algorithm

Let x' be a LP solution with $||x'|| \le (1+\delta)OPT$ and $||x'|| \ge \alpha(1/\delta + 1)$.

• Set
$$x^{fix} := x' - \frac{\alpha(1/\delta + 1)}{\|x'\|_1} x'$$
 and $b^{var} := b - A(x^{fix})$

- Solve the LP $\hat{x} = \min \{ \|x\|_1 | Ax \ge b^{var}, x \ge 0 \}$
- Generate a new solution $x'' = x^{fix} + \hat{x}$

The algorithm returns a feasible LP solution x'' with $\|x''\|_1 \le (1+\delta)OPT - \alpha$ and distance $\|x'' - x'\|_1 \le 2\alpha(1/\delta + 1)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Improve Packing:

Let B_t be a packing of instance I_t with $\max_i B_t(i) \leq (1 + \delta)OPT$.

Find a packing B'_t with $\max_i B'_t(i) \le (1 + \delta)OPT - 1$ such that migration factor between B_t and B'_t is small.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 ILP solution y'

 rounding

 Packing B_t

 for instance I_t

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

What are the remaining problems:

• Keep the number of non-zero components small

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

What are the remaining problems:

• Keep the number of non-zero components small

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Avoid calculation of optimum LP solutions

What are the remaining problems:

• Keep the number of non-zero components small

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Avoid calculation of optimum LP solutions
- Dynamic rounding technique

Main Result

We obtain a fully robust AFPTAS for the online bin packing problem with migration factor $\mathcal{O}(1/\epsilon^4)$ and running time $\mathcal{O}(\mathcal{M}(1/\epsilon^2)1/\epsilon^4 + \epsilon t + 1/\epsilon^2 \log(\epsilon^2 t)).$

Open Questions:

- Smaller migration factor and running time
- Lower bounds for migration factor
- Dynamic bin packing (allow departing of items)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Use LP-techniques for other online problems

Open Questions:

- Smaller migration factor and running time
- Lower bounds for migration factor
- Dynamic bin packing (allow departing of items)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Use LP-techniques for other online problems

Thank you!