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Synchronous Dataflow graph (SDF)

A simple formalism introduced by Lee and Messerschmitt 87 to
model communications (DSP/parallel computation)

• Nodes→ Actors;
• Arcs→ buffers;
• Tokens→ data.

A buffer between two actors A and B

A 2 B2 3

Balance equation: NA × 3 = NB × 2
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Consistence of a SDF
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N1 × 3 = N2 × 3

N2 × 6 = N3 × 8

N3 × 4 = N1 × 3

N1 = N2 = 4, N3 = 3

Definition (Lee and Messerschmitt 78)
A SDF is consistent if a repetition vector N exists.
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Normalization of a SDF
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M = PPCM(N1,N2,N3) = 12

Z1 = M
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Theorem (Marchetti and Munier 09)
A SDF is consistent iff it is normalized.



Problem Formulation Dataflow scheduling Dominant set of periodicity vectors Conclusions and Perspectives

Normalized SDF

Definition
A normalized SDF is a graph G = (T ,B,Z ,M0) such that
• T is the set of actors,
• B is the set of buffers,
• for any actor t ∈ T , Zt ∈ N? is the quantity of tokens

consumed/produced by t on each adjacent buffer,
• M0 : B → N is the initial marking,
• ∀t ∈ T , `(t) is the duration of one execution of t ,

If N is the repetition vector of G, there exists M ∈ N? such that
∀t ∈ T , Nt × Zt = M.
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Problem Formulation

Definition
A schedule is a function s : T × N? → N where s(t ,n) denotes
the nth execution of t .
s is feasible is the numbers of tokens in any buffer remain non
negative.

Definition
Let s be a feasible schedule. The throughput of an actor t
following s is λs(t) = limn→∞

n
s(t ,n) .

If G is consistent and strongly connected, ∀t ∈ T ,
λs(t)× Zt = λs is a constant.

How to evaluate efficiently the maximum throughput of G ?
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Simplest way: computing the earliest schedule

Actors are performed as soon as possible until a stabilization is
reached.

• Advantage→ the evaluation is exact (as the earliest
schedule maximizes the throughput of each actor);

• Drawback→ not polynomial, a K-periodic steady state is
always reached after a temporary phase. Each of them are
not polynomially bounded.

Not possible to use this method in an optimization process,
nor for SDF with a large number of actors.
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Restriction to K-Periodic schedules with K = N

• Many authors observed that an equivalent SDF Gexp with
unit weight (i.e Zt = 1, ∀t ∈ T ) may be built by expanding
each actor t Nt times.

• The throughput may then be polynomially computed using
classical critical circuits algorithms (Chrétienne 1982) or
Max-Plus algebra (Cohen et al. 1987).

The number of nodes of Gexp is then
∑

t∈T Nt (not polynomial !).

The size of Gexp is so important, that this method cannot be
considered for real life application.
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Example of K-Periodic schedule with K = N
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N1 = 3

N2 = 3

N3 = 4

t1

t2

t3

t1 1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

An [3,3,4]-Periodic schedule of (exact) maximum throughput
λ? = 12

5 . The throughput of the actors are λ(t1)? = 3
5 , λ?(t2) = 3

5
and λ?(t2) = 4

5 .
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Restriction to Periodic schedule (Kt = 1, ∀t ∈ T )

• The maximum throughput of a feasible periodic schedule
can be computed in polynomial time (Benabid et al. 2012).

• The distance to the optimum throughput is not bounded.
• Widely used as a certificate for several optimization

problems (minimization of the buffers size as example).

The evaluation of the throughput can be rather pessimistic for
real-life applications.
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Example of K-Periodic schedule (Kt = 1, ∀t ∈ T )
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t1 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

An [1,1,1]-Periodic schedule of (exact) maximum throughput
λ̃ = 5

3 . λ̃(t1) = 5
12 , λ̃(t2) = 5

12 and λ̃(t3) = 5
9 .
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Compute the maximum throughput fixing the
periodicity factor K

• Fix Kt ∈ {1, · · · ,Nt}, ∀t ∈ T ;
• Computing the maximum throughput of a K-periodic

schedule can be done in time complexity
O((

∑
b=(ti ,tj )∈B Kti × Ktj )

2) (Bodin et al. 2012).

The problem is then to find a good trade-off between:
1. the time required to evaluate the throughput;
2. the quality of the result.



Problem Formulation Dataflow scheduling Dominant set of periodicity vectors Conclusions and Perspectives

Example of Periodic schedule (K fixed arbitrarily)
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An [1,1,2]-Periodic schedule of (exact) maximum throughput
λ = 2 ∈ [λ̃, λ?]. λ(t1) = 1

2 , λ(t2) = 1
2 and λ(t3) = 2

3 .
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Non linearity of the maximum throughput

The throughput does not necessarily increase, nor remain
equal while K increases.

For our example:
• The maximum throughput for K = (1,1,3) equals 5

3 ;
• The maximum throughput for K = (1,1,2) equals 2;

Which vectors K are pertinent ?
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A Dominant set of periodicity vectors

Theorem
The maximum throughput λ? for K = N reaches the maximum
throughput of G.

Theorem (Bodin et al.)
Let be two vectors K and K ′ and their respective maximum
throughput λ and λ′. Let suppose that, for every actor t ∈ T , Kt
is a divisor of K ′

t . Then, λ′ ≥ λ.

The set K = {K/∀t ∈ T ,Kt |Nt} contains at least one vector
leading to the maximum throughput of G.
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An order relation for the set K of periodicity vectors
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A Dominant set of periodicity vectors

Theorem (Bodin et al.)
Let be two vectors K and K ′ such that, for any actor t ∈ T ,
K ′

t = gcd(Kt ,Nt). The respective maximum throughput λ and λ′

are such that λ′ ≥ λ.

Since N3 = 4, the throughput λ′ for K ′ = (1,1,3) is not better
than for K = (1,1,1).

Corollary
For any vector K 6∈ K, there exists a vector K̃ ∈ K with K > K̃
and the respective associated throughput λ̃ ≥ λ.

K is the set of pertinent values of K
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Example of an ordered set K for 4 actors

Figure: The darker is the node, the faster is the computation. The
larger it is, the better the solution is.

How to find good vectors K ?
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Conclusions and Perspectives

1. Building easily a periodic achedule for any fixed vector K is
possible;

2. An original characterization of the set K of dominant
periodicity vectors.

Next open question is: how to choose elements from K to get a
fast and accurate evaluation of the maximum throughput of G ?
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