Dominance of K-Periodic schedules for evaluating the maximum throughput of a SDF

B.Bodin^{1,2} A.Munier-Kordon^{1,2} B.Dupont de Dinechin²

¹LIP6, Université P. et M. Curie, France

²Kalray

Lyon, July 2014

Problem Formulation

Conclusions and Perspectives

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Problem Formulation

Dataflow scheduling

Dominant set of periodicity vectors

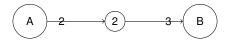
Conclusions and Perspectives

Synchronous Dataflow graph (SDF)

A simple formalism introduced by Lee and Messerschmitt 87 to model communications (DSP/parallel computation)

- Nodes \rightarrow Actors;
- Arcs → buffers;
- Tokens \rightarrow data.

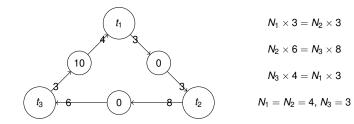
A buffer between two actors A and B



Balance equation: $N_A \times 3 = N_B \times 2$

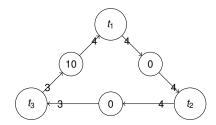
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Consistence of a SDF



Definition (Lee and Messerschmitt 78) A SDF is consistent if a repetition vector *N* exists.

Normalization of a SDF



 $M = PPCM(N_1, N_2, N_3) = 12$ $Z_1 = \frac{M}{N_1} = 4$ $Z_3 = \frac{M}{N_2} = 4$ $Z_3 = \frac{M}{N_2} = 3$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (Marchetti and Munier 09) *A SDF is consistent iff it is normalized.*

Normalized SDF

Definition

A normalized SDF is a graph $\mathcal{G} = (\mathcal{T}, \mathcal{B}, Z, M_0)$ such that

- T is the set of actors,
- B is the set of buffers,
- for any actor *t* ∈ *T*, *Z_t* ∈ ℕ* is the quantity of tokens consumed/produced by *t* on each adjacent buffer,
- $M_0: \mathcal{B} \to \mathbb{N}$ is the initial marking,
- $\forall t \in \mathcal{T}, \ell(t)$ is the duration of one execution of t,

If *N* is the repetition vector of \mathcal{G} , there exists $M \in \mathbb{N}^*$ such that $\forall t \in \mathcal{T}, N_t \times Z_t = M$.

Problem Formulation

Definition

A schedule is a function $s : T \times \mathbb{N}^* \to \mathbb{N}$ where s(t, n) denotes the *n*th execution of *t*.

s is feasible is the numbers of tokens in any buffer remain non negative.

Definition

Let *s* be a feasible schedule. The throughput of an actor *t* following *s* is $\lambda^{s}(t) = \lim_{n \to \infty} \frac{n}{s(t,n)}$.

If \mathcal{G} is consistent and strongly connected, $\forall t \in \mathcal{T}$, $\lambda^{s}(t) \times Z_{t} = \lambda^{s}$ is a constant.

How to evaluate efficiently the maximum throughput of \mathcal{G} ?

(ロ) (同) (三) (三) (三) (○) (○)

Simplest way: computing the earliest schedule

Actors are performed as soon as possible until a stabilization is reached.

- Advantage → the evaluation is exact (as the earliest schedule maximizes the throughput of each actor);
- Drawback → not polynomial, a K-periodic steady state is always reached after a temporary phase. Each of them are not polynomially bounded.

Not possible to use this method in an optimization process, nor for SDF with a large number of actors.

(日) (日) (日) (日) (日) (日) (日)

Restriction to K-Periodic schedules with K = N

- Many authors observed that an equivalent SDF *G_{exp}* with unit weight (i.e *Z_t* = 1, ∀*t* ∈ *T*) may be built by expanding each actor *t N_t* times.
- The throughput may then be polynomially computed using classical critical circuits algorithms (Chrétienne 1982) or Max-Plus algebra (Cohen et al. 1987).

The number of nodes of \mathcal{G}_{exp} is then $\sum_{t \in \mathcal{T}} N_t$ (not polynomial !).

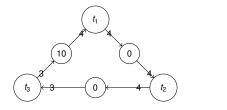
The size of \mathcal{G}_{exp} is so important, that this method cannot be considered for real life application.

 $N_1 = 3$

 $N_2 = 3$

 $N_3 = 4$

Example of K-Periodic schedule with K = N



t₁ t2 t₃

An [3, 3, 4]-Periodic schedule of (exact) maximum throughput $\lambda^* = \frac{12}{5}$. The throughput of the actors are $\lambda(t_1)^* = \frac{3}{5}$, $\lambda^*(t_2) = \frac{3}{5}$ and $\lambda^*(t_2) = \frac{4}{5}$.

・ロト・西ト・ヨト ・ヨー シック

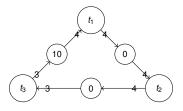
< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

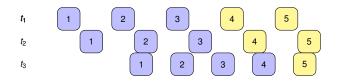
Restriction to Periodic schedule ($K_t = 1, \forall t \in T$)

- The maximum throughput of a feasible periodic schedule can be computed in polynomial time (Benabid et al. 2012).
- The distance to the optimum throughput is not bounded.
- Widely used as a certificate for several optimization problems (minimization of the buffers size as example).

The evaluation of the throughput can be rather pessimistic for real-life applications.

Example of K-Periodic schedule ($K_t = 1, \forall t \in T$)





An [1, 1, 1]-Periodic schedule of (exact) maximum throughput $\tilde{\lambda} = \frac{5}{3}$. $\tilde{\lambda}(t_1) = \frac{5}{12}$, $\tilde{\lambda}(t_2) = \frac{5}{12}$ and $\tilde{\lambda}(t_3) = \frac{5}{9}$.

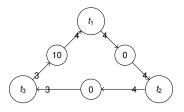
Compute the maximum throughput fixing the periodicity factor *K*

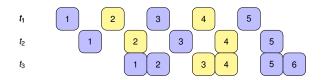
- Fix $K_t \in \{1, \cdots, N_t\}, \forall t \in \mathcal{T};$
- Computing the maximum throughput of a K-periodic schedule can be done in time complexity
 O((∑_{b=(t_i,t_i)∈B} K_{t_i} × K_{t_j})²) (Bodin et al. 2012).

The problem is then to find a good trade-off between:

- 1. the time required to evaluate the throughput;
- 2. the quality of the result.

Example of Periodic schedule (K fixed arbitrarily)





An [1, 1, 2]-Periodic schedule of (exact) maximum throughput $\lambda = 2 \in [\tilde{\lambda}, \lambda^*]$. $\lambda(t_1) = \frac{1}{2}, \lambda(t_2) = \frac{1}{2}$ and $\lambda(t_3) = \frac{2}{3}$.

Non linearity of the maximum throughput

The throughput does not necessarily increase, nor remain equal while K increases.

For our example:

- The maximum throughput for K = (1, 1, 3) equals $\frac{5}{3}$;
- The maximum throughput for K = (1, 1, 2) equals 2;

Which vectors *K* are pertinent ?

A Dominant set of periodicity vectors

Theorem

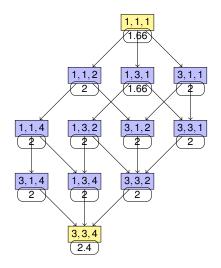
The maximum throughput λ^* for K = N reaches the maximum throughput of \mathcal{G} .

Theorem (Bodin et al.)

Let be two vectors K and K' and their respective maximum throughput λ and λ' . Let suppose that, for every actor $t \in \mathcal{T}$, K_t is a divisor of K'_t . Then, $\lambda' \geq \lambda$.

The set $\mathcal{K} = \{ \mathcal{K} / \forall t \in \mathcal{T}, \mathcal{K}_t | \mathcal{N}_t \}$ contains at least one vector leading to the maximum throughput of \mathcal{G} .

An order relation for the set \mathcal{K} of periodicity vectors



A Dominant set of periodicity vectors

Theorem (Bodin et al.)

Let be two vectors K and K' such that, for any actor $t \in T$, $K'_t = \text{gcd}(K_t, N_t)$. The respective maximum throughput λ and λ' are such that $\lambda' \geq \lambda$.

Since $N_3 = 4$, the throughput λ' for K' = (1, 1, 3) is not better than for K = (1, 1, 1).

Corollary

For any vector $K \notin \mathcal{K}$, there exists a vector $\tilde{K} \in \mathcal{K}$ with $K > \tilde{K}$ and the respective associated throughput $\tilde{\lambda} \ge \lambda$.

 \mathcal{K} is the set of pertinent values of K

・ コット (雪) (小田) (コット 日)

Example of an ordered set \mathcal{K} for 4 actors

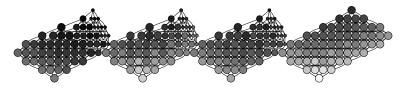


Figure: The darker is the node, the faster is the computation. The larger it is, the better the solution is.

How to find good vectors K?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions and Perspectives

- 1. Building easily a periodic achedule for any fixed vector *K* is possible;
- 2. An original characterization of the set ${\cal K}$ of dominant periodicity vectors.

Next open question is: how to choose elements from \mathcal{K} to get a fast and accurate evaluation of the maximum throughput of \mathcal{G} ?