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General context
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• The classical approach is based on a 
mixture of technologies (e.g., 
MPI+OpenMP+CUDA) which
- requires a big programming effort
- is difficult to maintain and update
- is prone to (performance) portability 

issues
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General context
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• Runtimes systems provide an abstraction 
layer that hides the architecture details

• The workload is expressed as a DAG of 
tasks where the dependencies are
- defined explicitly
- defined through rules
- automatically inferred

• The scheduler decides when/where to 
execute a task

• The drivers deploy the code on the devices

• The memory manager does the memory 
transfers and guarantees the consistency
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Motivation application
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The qr_mumps sparse solver

The multifrontal QR factorization is guided by a graph called elimination tree

• Five elementary operations:
- Activate
- Panel
- Update
- Assembel
- Clean



Motivation application
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The qr_mumps sparse solver

The multifrontal QR factorization is guided by a graph called elimination tree

• Data-flow parallel approach
- Tasks are operations on portion of fronts (1-D partitioning)
- Tasks are scheduled dynamically (dependencies between them)

• Tree of DAGs :
- Nodes = DAG
- Edges = dependencies



DAG structure of the parallel applications:
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Submitted to the runtime

• Use data-flow approach:
- DAG of sequential tasks

• Advantages:
- Fine granularity
- Increased parallelism

• Drawbacks for big DAGs:
- Overhead of the runtime
- Complexity of the scheduling
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DAG structure of the parallel applications:
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Submitted to the runtime

• Use data-flow approach:
- DAG of sequential tasks

• Advantages:
- Fine granularity
- Increased parallelism

• Drawbacks for big DAGs:
- Overhead of the runtime
- Complexity of the scheduling

• Possible solution:
- Pack sub-DAGs into bigger 

tasks : malleable tasks 
- Use high-level scheduling 

algorithm

CPUs

Runtime

Drivers (CUDA, OpenCL)

GPUs MICs



Interraction between the application & the runtime 
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The runtime doesn’t “automatically” ...

• Improve the performance of the 
application:
- Structure the DAG (application)
- Map it to the topology (runtime)

 Enhance locality
 Respect the critical path

• Difficulties:
- What branches of the DAG to 

merge
- Allocate resources for them

CPUs

Runtime

Drivers (CUDA, OpenCL)

GPUs MICs



Using StarPU as an experimental platform
to study resource negociation

• The StarPU runtime system
- Dynamically schedule tasks on all 

processing units
• See a pool of heterogeneous 

processing units

- Avoid unnecessary data transfers 
between accelerators
• Software VSM for heterogeneous 

machines

- Open scheduling platform
• Different schedulers to meet 

different needs
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Scheduling Contexts: to manage parallel tasks
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Toward code composability 

• Isolate concurrent parallel codes
- “lightweight virtual machines”
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Scheduling Contexts: to manage parallel tasks
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Toward code composability 

• Contexts may expand and shrink
- Hypervised approach

• Resize contexts
• Share resources

- Maximize overall throughput

- Use dynamic feedback both 
from application and runtime
• Monitor the PUs
• Monitor the application
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• Isolate concurrent parallel codes

- “lightweight virtual machines”



Hierarchical parallelism in qr_mumps
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Proportional mapping

• Idea:
- Split the set of PUs among the 

branches
- Consider their workload
- Assign all PUs to at least one 

subtree



Hierarchical parallelism in qr_mumps
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Proportional mapping

• Idea:
- Split the set of PUs among the 

branches
- Consider their workload
- Assign all PUs to at least one 

subtree
• Extension of the algorithm:

- Stopping criterion for the top-
down process

- Bundles: set of PUs sharing a 
level of memory



Hierarchical parallelism in qr_mumps
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Proportional mapping

• Balance the workload of the tasks

• DAG of malleable tasks

• Provide to the runtime:
- The hierarchy of parallel tasks
- The workload of the parallel tasks 

• Estimates built during analysis
• Dynamic updates during factorization
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Resize hierarchally the scheduling contexts
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The role of the Hypervisor

• Resizes the contexts locally
- Resizing decisions at each level
- Deadlines per children sharing the 

same parent

• Monitors the PUs

• Information coming from the 

leaves towards the root:

• Efficiency of the PUs

• Speed of the scheduling 

contexts



Allocate processing units to the contexts
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By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?



Allocate processing units to the contexts
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By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

nCPUs in Context c

Workload of 
Context c



Allocate processing units the tree
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By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

nCPUs in Context c

Workload of 
Context c

Speed of CPUs in Context C
Execution time of the application



Allocate processing units to the contexts
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By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

nCPUs in Context c

Workload of 
Context c

Speed of CPUs in Context C
Execution time of the application

Rough 
information about 
the parallelisme 
of the kernels



Triggering the reallocation of resources
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When static dimensioning is not enough

• The hypervisor monitors:
- Idle PUs
- Execution speed of the contexts

•  Execution time of the application cut in intervals
•  Observed Speed = executed_flops / time
•  Target speed = #PUs * average speed of PU

• The hypervisor:
- Iterates hierarchically the tree of contexts (root -> leaves)
- Searches for idle PUs or slow contexts
- Stops at the level where the application doesn’t behave “well” 
- Triggers resizing hierarchically starting from that level



Using contexts to guide scheduling
Dynamically assigning PUs to the parallel nodes of the tree
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Scalability of the parallel tasks
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• Idleness problem:
- Sequential elementary tasks 
- Correct nCPUs but not enough tasks

• Possible solution:
- Use the idle time to compute a max
- Drawback:

• When to increase it?
• What to do with the unused PUs? 

• Intuition:
- Use parallel/moldable elementary tasks to 

approximate malleable tasks
- Need to find a good tradeoff between inner 

and outer parallelism
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Using contexts to guide scheduling
 Efficiency gain: on small problems
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Using contexts to guide scheduling
 Efficiency gain: on large problems
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Using contexts to guide scheduling
Improve locality for Rucci1



Conclusion
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• Structure the parallelism of the application 
- By building a hierarchy of the scheduling contexts

• Use the hypervisor in order to:
- Monitor the efficiency of the PUs
- Monitor the speed of the scheduling contexts
- Dynamically resize the scheduling contexts

• Improve the behavior of qr_mumps:
- By enforcing the locality
- By respecting the critical path

• Need a strong interaction between the solver and the hypervisor



On going work (1/2)
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Non StarPU Parallel tasks 

• Deal with non-StarPU tasks
- Sub-DAGs of StarPU tasks
- Parallel tasks (parallel mkl blas, …)

• Resizing StarPU/OpenMP/TBB contexts
- Common metrics?

• Contexts as a way to better utilize 
Heterogeneous/Manycore Architectures
- GPUs
- Intel Xeon Phi accelerators
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On going work (2/2)
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• Increase the amount of parallelism
- Move to 2D partitionning of frontal matrices when needed.

• Limit the memory usage of the factorization
- Control task submission while avoiding deadlocks.

• Consider different paradigms (e.g. PTG model)
- A ParSEC-based version of the solver is being developped.

• Exploit accelerator-based heterogeneous architectures
- GPU, Intel Xeon-Phi, …
- Still preliminary.
- Need for scheduling algorithms for graphs of malleable/moldable 

tasks running on heterogeneous platforms.

• Study distributed memory architectures.
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