
A runtime approach to dynamic resource
allocation for sparse direct solvers

INRIA Bordeaux Sud-Ouest

Andra Hugo, Abdou Guermouche Pierre-André Wacrenier, Raymond Namyst
Inria, LaBRI, University of Bordeaux

General context

- 2

• The classical approach is based on a
mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which
- requires a big programming effort
- is difficult to maintain and update
- is prone to (performance) portability

issues

CPU

Parallel
Compilers

HPC Applications

Parallel
Libraries

GPU MIC

- 2

General context

- 3

• Runtimes systems provide an abstraction
layer that hides the architecture details

• The workload is expressed as a DAG of
tasks where the dependencies are
- defined explicitly
- defined through rules
- automatically inferred

• The scheduler decides when/where to
execute a task

• The drivers deploy the code on the devices

• The memory manager does the memory
transfers and guarantees the consistency

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

GPU MICCPU

Parallel
Compilers

HPC Applications

Task-based Runtime system

Drivers (CUDA, OpenCL)

Parallel
Libraries

GPU MIC

- 2

Motivation application

- 3

The qr_mumps sparse solver

The multifrontal QR factorization is guided by a graph called elimination tree

• Five elementary operations:
- Activate
- Panel
- Update
- Assembel
- Clean

Motivation application

- 3

The qr_mumps sparse solver

The multifrontal QR factorization is guided by a graph called elimination tree

• Data-flow parallel approach
- Tasks are operations on portion of fronts (1-D partitioning)
- Tasks are scheduled dynamically (dependencies between them)

• Tree of DAGs :
- Nodes = DAG
- Edges = dependencies

DAG structure of the parallel applications:

- 4

Submitted to the runtime

• Use data-flow approach:
- DAG of sequential tasks

• Advantages:
- Fine granularity
- Increased parallelism

• Drawbacks for big DAGs:
- Overhead of the runtime
- Complexity of the scheduling

CPUs

Runtime

Drivers (CUDA, OpenCL)

GPUs MICs

DAG structure of the parallel applications:

- 4

Submitted to the runtime

• Use data-flow approach:
- DAG of sequential tasks

• Advantages:
- Fine granularity
- Increased parallelism

• Drawbacks for big DAGs:
- Overhead of the runtime
- Complexity of the scheduling

• Possible solution:
- Pack sub-DAGs into bigger

tasks : malleable tasks
- Use high-level scheduling

algorithm

CPUs

Runtime

Drivers (CUDA, OpenCL)

GPUs MICs

Interraction between the application & the runtime

- 5

The runtime doesn’t “automatically” ...

• Improve the performance of the
application:
- Structure the DAG (application)
- Map it to the topology (runtime)

 Enhance locality
 Respect the critical path

• Difficulties:
- What branches of the DAG to

merge
- Allocate resources for them

CPUs

Runtime

Drivers (CUDA, OpenCL)

GPUs MICs

Using StarPU as an experimental platform
to study resource negociation

• The StarPU runtime system
- Dynamically schedule tasks on all

processing units
• See a pool of heterogeneous

processing units

- Avoid unnecessary data transfers
between accelerators
• Software VSM for heterogeneous

machines

- Open scheduling platform
• Different schedulers to meet

different needs

- 6

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

GPU MIC

Scheduling Contexts: to manage parallel tasks

- 7

Toward code composability

• Isolate concurrent parallel codes
- “lightweight virtual machines”

Context B
Push

Context A

CPU
workers

GPU
workers

Push

Hypervisor

Scheduling Contexts: to manage parallel tasks

- 7

Toward code composability

• Contexts may expand and shrink
- Hypervised approach

• Resize contexts
• Share resources

- Maximize overall throughput

- Use dynamic feedback both
from application and runtime
• Monitor the PUs
• Monitor the application

Context B
Push

Context A

CPU
workers

GPU
workers

Push

Hypervisor

• Isolate concurrent parallel codes

- “lightweight virtual machines”

Hierarchical parallelism in qr_mumps

- 8

Proportional mapping

• Idea:
- Split the set of PUs among the

branches
- Consider their workload
- Assign all PUs to at least one

subtree

Hierarchical parallelism in qr_mumps

- 8

Proportional mapping

• Idea:
- Split the set of PUs among the

branches
- Consider their workload
- Assign all PUs to at least one

subtree
• Extension of the algorithm:

- Stopping criterion for the top-
down process

- Bundles: set of PUs sharing a
level of memory

Hierarchical parallelism in qr_mumps

- 8

Proportional mapping

• Balance the workload of the tasks

• DAG of malleable tasks

• Provide to the runtime:
- The hierarchy of parallel tasks
- The workload of the parallel tasks

• Estimates built during analysis
• Dynamic updates during factorization

Ctx
1

Ctx
2

Ctx
6

Ctx
3

Ctx
4

Ctx
5

Ctx
7

Ctx
8

Ctx
9

Ctx
10

Resize hierarchally the scheduling contexts

- 9

The role of the Hypervisor

• Resizes the contexts locally
- Resizing decisions at each level
- Deadlines per children sharing the

same parent

• Monitors the PUs

• Information coming from the

leaves towards the root:

• Efficiency of the PUs

• Speed of the scheduling

contexts

Allocate processing units to the contexts

- 10

By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

Allocate processing units to the contexts

- 10

By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

nCPUs in Context c

Workload of
Context c

Allocate processing units the tree

- 10

By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

nCPUs in Context c

Workload of
Context c

Speed of CPUs in Context C
Execution time of the application

Allocate processing units to the contexts

- 10

By predicting the future

• Input: the workload (number of flops) of each context
• Rough computation of the number of resources needed by each context

- How many CPUs allocated to each context?

nCPUs in Context c

Workload of
Context c

Speed of CPUs in Context C
Execution time of the application

Rough
information about
the parallelisme
of the kernels

Triggering the reallocation of resources

- 11

When static dimensioning is not enough

• The hypervisor monitors:
- Idle PUs
- Execution speed of the contexts

• Execution time of the application cut in intervals
• Observed Speed = executed_flops / time
• Target speed = #PUs * average speed of PU

• The hypervisor:
- Iterates hierarchically the tree of contexts (root -> leaves)
- Searches for idle PUs or slow contexts
- Stops at the level where the application doesn’t behave “well”
- Triggers resizing hierarchically starting from that level

Using contexts to guide scheduling
Dynamically assigning PUs to the parallel nodes of the tree

- 12

Scalability of the parallel tasks

- 13

• Idleness problem:
- Sequential elementary tasks
- Correct nCPUs but not enough tasks

• Possible solution:
- Use the idle time to compute a max
- Drawback:

• When to increase it?
• What to do with the unused PUs?

• Intuition:
- Use parallel/moldable elementary tasks to

approximate malleable tasks
- Need to find a good tradeoff between inner

and outer parallelism

- 14

Using contexts to guide scheduling
 Efficiency gain: on small problems

- 15

Using contexts to guide scheduling
 Efficiency gain: on large problems

- 16

Using contexts to guide scheduling
Improve locality for Rucci1

Conclusion

- 17

• Structure the parallelism of the application
- By building a hierarchy of the scheduling contexts

• Use the hypervisor in order to:
- Monitor the efficiency of the PUs
- Monitor the speed of the scheduling contexts
- Dynamically resize the scheduling contexts

• Improve the behavior of qr_mumps:
- By enforcing the locality
- By respecting the critical path

• Need a strong interaction between the solver and the hypervisor

On going work (1/2)

- 18

Non StarPU Parallel tasks

• Deal with non-StarPU tasks
- Sub-DAGs of StarPU tasks
- Parallel tasks (parallel mkl blas, …)

• Resizing StarPU/OpenMP/TBB contexts
- Common metrics?

• Contexts as a way to better utilize
Heterogeneous/Manycore Architectures
- GPUs
- Intel Xeon Phi accelerators

Context B
Context A

CPU
workers

GPU
workers

Hypervisor

On going work (2/2)

- 19

• Increase the amount of parallelism
- Move to 2D partitionning of frontal matrices when needed.

• Limit the memory usage of the factorization
- Control task submission while avoiding deadlocks.

• Consider different paradigms (e.g. PTG model)
- A ParSEC-based version of the solver is being developped.

• Exploit accelerator-based heterogeneous architectures
- GPU, Intel Xeon-Phi, …
- Still preliminary.
- Need for scheduling algorithms for graphs of malleable/moldable

tasks running on heterogeneous platforms.

• Study distributed memory architectures.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

