
Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Scheduling Malleable Task Trees

Bertrand Simon Loris Marchal Frédéric Vivien

ENS Lyon

9th Scheduling for Large Scale Systems Workshop, Lyon 2014

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 1 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Outline

1 Introduction and notations

2 Minimizing the makespan
Characterization of the optimal schedule
Scheme of the proof of the theorem

3 Minimizing the makespan with a modified speedup function
The refinement and its consequences
Computing the best PFC allocation

4 Minimizing the makespan and memory peak
Description of the model
Complexity results

5 Conclusion

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 2 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Outline

1 Introduction and notations

2 Minimizing the makespan

3 Minimizing the makespan with a modified speedup function

4 Minimizing the makespan and memory peak

5 Conclusion

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 3 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Introduction

Motivation
Solving sparse linear systems −→ sparse matrix factorizations

−→ task trees to be scheduled
Processing power available: homogeneous parallel platform
Need to schedule task trees using tree and task parallelism

0

1 2 3 4

11 12 13 14 21 22 23

121 122 123 124 231 232

Definitions
task tree: structure defining precedence order, a node cannot begin before its
children are completed
tree parallelism: possibility to execute simultaneously several tasks
task parallelism: possibility to allocate several processors to a task

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 4 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Introduction

Motivation
Solving sparse linear systems −→ sparse matrix factorizations

−→ task trees to be scheduled
Processing power available: homogeneous parallel platform
Need to schedule task trees using tree and task parallelism

0

1 2 3 4

11 12 13 14 21 22 23

121 122 123 124 231 232

Definitions
task tree: structure defining precedence order, a node cannot begin before its
children are completed
tree parallelism: possibility to execute simultaneously several tasks
task parallelism: possibility to allocate several processors to a task

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 4 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Introduction

Motivation
Solving sparse linear systems −→ sparse matrix factorizations

−→ task trees to be scheduled
Processing power available: homogeneous parallel platform
Need to schedule task trees using tree and task parallelism

0

1 2 3 4

11 12 13 14 21 22 23

121 122 123 124 231 232

Definitions
task tree: structure defining precedence order, a node cannot begin before its
children are completed
tree parallelism: possibility to execute simultaneously several tasks
task parallelism: possibility to allocate several processors to a task

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 4 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Introduction

Motivation
Solving sparse linear systems −→ sparse matrix factorizations

−→ task trees to be scheduled
Processing power available: homogeneous parallel platform
Need to schedule task trees using tree and task parallelism

0

1 2 3 4

11 12 13 14 21 22 23

121 122 123 124 231 232

Definitions
task tree: structure defining precedence order, a node cannot begin before its
children are completed
tree parallelism: possibility to execute simultaneously several tasks
task parallelism: possibility to allocate several processors to a task

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 4 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Introduction

Motivation
Solving sparse linear systems −→ sparse matrix factorizations

−→ task trees to be scheduled
Processing power available: homogeneous parallel platform
Need to schedule task trees using tree and task parallelism

0

1 2 3 4

11 12 13 14 21 22 23

121 122 123 124 231 232

Definitions
task tree: structure defining precedence order, a node cannot begin before its
children are completed
tree parallelism: possibility to execute simultaneously several tasks
task parallelism: possibility to allocate several processors to a task

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 4 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Model and notations

Parameters of the problem

Need for a model of realist (imperfect) task parallelism: Malleable tasks [Le04]
Tree graph G (previous slide)
Processor profile: step function p(t), available number of processors at time t

Speedup f (= sequential time / parallel time)

f (p)= pα for 0<α< 1, p ∈R+ (non-integer processor shares: time-sharing techniques)

Advocated for matrix computations [PM96,BG07]
Processing time of task Ti on p processors: Li/pα

overestimation
of this model

1

1

speed-up

processors

α= 1
perfect parallelism

0<α< 1

α= 0
no parallelism

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 5 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Model and notations

Parameters of the problem

Need for a model of realist (imperfect) task parallelism: Malleable tasks [Le04]
Tree graph G (previous slide)
Processor profile: step function p(t), available number of processors at time t

Speedup f (= sequential time / parallel time)

f (p)= pα for 0<α< 1, p ∈R+ (non-integer processor shares: time-sharing techniques)

Advocated for matrix computations [PM96,BG07]
Processing time of task Ti on p processors: Li/pα

overestimation
of this model

1

1

speed-up

processors

α= 1
perfect parallelism

0<α< 1

α= 0
no parallelism

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 5 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Definition of schedules

Structure of schedules

Schedule S : piecewise continuous functions {t 7→ pi (t)} defined on [0,τ]

τ: makespan of S (supposed tight: not all pi (τ−ε) are null)

Ratio of work up to time t: wi (t)=
∫ t

0
pi (x)α dx

/
Li

Validity conditions of a schedule

Does not use more than p(t) processors at any time t: ∑
i pi (t)≤ p(t)

Completes all the tasks: ∀i , wi (τ)= 1
Respects the precedence order: ∀i , ∀t ∈ [0,τ], wi (t)> 0 =⇒ ∀j ∈Children(Ti), wj (t)= 1

5

1

2
3

4

[0,τ]

p(t)

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 6 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Generalization of trees

Our objective: study trees
Next two sections: study a more general structure

Series Parallel graphs
Recursively defined by being either:

a single task
a parallel composition of two SP graphs
a series composition of two SP graphs

A tree can be extended to a SP graph.

T

T

1

2

4 65 3

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 7 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Generalization of trees

Our objective: study trees
Next two sections: study a more general structure

Series Parallel graphs
Recursively defined by being either:

a single task
a parallel composition of two SP graphs
a series composition of two SP graphs

A tree can be extended to a SP graph.

G1

G2

G1 ∥G2

1

2

4 65 3

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 7 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Generalization of trees

Our objective: study trees
Next two sections: study a more general structure

Series Parallel graphs
Recursively defined by being either:

a single task
a parallel composition of two SP graphs
a series composition of two SP graphs

A tree can be extended to a SP graph.

G1 G2

G1 ;G2

1

2

4 65 3

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 7 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

Outline

1 Introduction and notations

2 Minimizing the makespan
Characterization of the optimal schedule
Scheme of the proof of the theorem

3 Minimizing the makespan with a modified speedup function

4 Minimizing the makespan and memory peak

5 Conclusion

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 8 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

Statement of the problem

Context
Objects of interest: miminum-makespan schedules of a SP graph G
[PM96] proved the theorem below using heavy optimal control theory
Our objective: reprove it using pure-scheduling arguments

Theorem (Prasanna & Musicus)

Optimal schedules respect the Processor Flow Conservation property:
the ratio of processors given to each branch of any parallel node is constant.

G1

G2

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 9 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

Consequences of the theorem

Corollary

Each task: alloted a constant ratio, independent of p(t)
its children terminate simultaneously

Each graph G is equivalent to the task of length LG recursively defined by:
Ï LTi =Li
Ï LG1 ;G2 =LG1 +LG2
Ï LG1 ∥G2 =

(
L

1/α
G1

+L
1/α
G2

)α
The (unique) optimal schedule SPM can be computed in polynomial time.

1 2

3 4

5
1
2

4

3 5

time

ratio of
p(t)

A tree G (particular SP graph) and the shape of its optimal schedule under any p(t)

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 10 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

First step of the proof: pi(t)’s are step functions

A clean interval of a schedule S : a time interval during which no task terminates.

Lemma

If p(t)= p, optimal schedules have constant pi (t)’s on its clean intervals.

Proof.

Consider S with pj (t) not constant on a clean ∆ −→ S ′ with smaller makespan
Uses strict concavity of f : replace pi (t)’s by their mean

Get the inequality: W∆
j (S)=

∫
∆
pj (t)αdt <

∫
∆

(1
∆

∫
∆
pj (t)dt

)α
dx

1

2
3

4

S

time

p =⇒
1

2
3

4

S ′

time

p

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 11 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

First step of the proof: pi(t)’s are step functions

A clean interval of a schedule S : a time interval during which no task terminates.

Lemma

If p(t)= p, optimal schedules have constant pi (t)’s on its clean intervals.

Proof.

Consider S with pj (t) not constant on a clean ∆ −→ S ′ with smaller makespan
Uses strict concavity of f : replace pi (t)’s by their mean

Get the inequality: W∆
j (S)=

∫
∆
pj (t)αdt <

∫
∆

(1
∆

∫
∆
pj (t)dt

)α
dx

1

2
3

4

S

time

p =⇒
1

2
3

4

S ′

time

p

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 11 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

First step of the proof: pi(t)’s are step functions

A clean interval of a schedule S : a time interval during which no task terminates.

Lemma

If p(t)= p, optimal schedules have constant pi (t)’s on its clean intervals.

Proof.

Consider S with pj (t) not constant on a clean ∆ −→ S ′ with smaller makespan
Uses strict concavity of f : replace pi (t)’s by their mean

Get the inequality: W∆
j (S)=

∫
∆
pj (t)αdt <

∫
∆

(1
∆

∫
∆
pj (t)dt

)α
dx

1

2
3

4

S

time

p =⇒
1

2
3

4

S ′

time

p

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 11 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

For any G: let ri (t)= pi (t)/p(t) be the fraction of processors allocated to Ti .

Lemma

For G being T1 ∥T2, in optimal schedules: r1(t)=L1/α1
/

L
1/α
1∥2 .

Proof. (Note that p(t) is not necessarily constant)

Suppose S optimal with r1(t) not constant −→ S ′ with a smaller makespan
Properties used: strict concavity of f and ∀xy , f (xy)= f (x)f (y)

S

T2

T1

T1

T2

rA1

rB1

1

0

A B

=⇒
T2

T1 T1

T2

r1

1

0

S ′

A B

Details: with ApαA =BpαB and 2r1 = rA1 + rB1 ,(
rB1

)α−(r1)α

rB1 − r1
<
(r1)α−

(
rA1

)α
r1− rA1

=⇒ Apα
(
rA1

)α+Bqα
(
rB1

)α < rα1 (Apα+Bqα)

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 12 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

For any G: let ri (t)= pi (t)/p(t) be the fraction of processors allocated to Ti .

Lemma

For G being T1 ∥T2, in optimal schedules: r1(t)=L1/α1
/

L
1/α
1∥2 .

Proof. (Note that p(t) is not necessarily constant)

Suppose S optimal with r1(t) not constant −→ S ′ with a smaller makespan
Properties used: strict concavity of f and ∀xy , f (xy)= f (x)f (y)

S

T2

T1

T1

T2

rA1

rB1

1

0

A B

=⇒
T2

T1 T1

T2

r1

1

0

S ′

A B

Details: with ApαA =BpαB and 2r1 = rA1 + rB1 ,(
rB1

)α−(r1)α

rB1 − r1
<
(r1)α−

(
rA1

)α
r1− rA1

=⇒ Apα
(
rA1

)α+Bqα
(
rB1

)α < rα1 (Apα+Bqα)

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 12 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

For any G: let ri (t)= pi (t)/p(t) be the fraction of processors allocated to Ti .

Lemma

For G being T1 ∥T2, in optimal schedules: r1(t)=L1/α1
/

L
1/α
1∥2 .

Proof. (Note that p(t) is not necessarily constant)

Suppose S optimal with r1(t) not constant −→ S ′ with a smaller makespan
Properties used: strict concavity of f and ∀xy , f (xy)= f (x)f (y)

S

T2

T1

T1

T2

rA1

rB1

1

0

A B

=⇒
T2

T1 T1

T2

r1

1

0

S ′

A B

Details: with ApαA =BpαB and 2r1 = rA1 + rB1 ,(
rB1

)α−(r1)α

rB1 − r1
<
(r1)α−

(
rA1

)α
r1− rA1

=⇒ Apα
(
rA1

)α+Bqα
(
rB1

)α < rα1 (Apα+Bqα)

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 12 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

End of the proof of the theorem

Few steps remaining to prove the theorem:

T1 ∥T2 under any p(t) ⇐⇒ T1∥2 of length L1∥2 under any p(t)
T1 ;T2 under any p(t) ⇐⇒ T1 ;2 of length L1 ;2 under any p(t)
Proof by induction on the structure of G

p(t)= 6

M =
(2
3

)α
+

(4
3

)α

0

2α

1

1

2α

0

2α

2α

1

1

Example of computed schedule

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 13 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Characterization of the optimal schedule
Scheme of the proof of the theorem

End of the proof of the theorem

Few steps remaining to prove the theorem:

T1 ∥T2 under any p(t) ⇐⇒ T1∥2 of length L1∥2 under any p(t)
T1 ;T2 under any p(t) ⇐⇒ T1 ;2 of length L1 ;2 under any p(t)
Proof by induction on the structure of G

p(t)= 6

M =
(2
3

)α
+

(4
3

)α
0

2α

1

1

2α

0

2α

2α

1

1

1.5 3
0.75

0.75 1.5

3 0.75

0.75

Example of computed schedule

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 13 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Outline

1 Introduction and notations

2 Minimizing the makespan

3 Minimizing the makespan with a modified speedup function
The refinement and its consequences
Computing the best PFC allocation

4 Minimizing the makespan and memory peak

5 Conclusion

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 14 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Refinement of the model

Motivation: the previous model overestimates the speedup for p < 1

Modification of the speedup function

p ≥ 1: f (p)= pα p ≤ 1: f (p)= p

1

1

speed-up

processors

f (p)= p

f (p)= pα
new model

Consequences
The previous theorem does not hold.
We cannot compute the optimal schedule.
Restriction: assume p(t)= p in the following.

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 15 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Consequence of the refinement

Definition (PM allocation)

The allocation SPM computed by the formulas of previous section.

Theorem
The PM allocation is not a constant ratio approximation at α fixed.

p(t)= 6

PM schedule,
optimal with
previous model

M1 =
(2
3

)α
+ 4
3

0

2α

1

1

2α

0

2α

2α

1

1

Example of graph where the PM allocation is not optimal

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 16 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Consequence of the refinement

Definition (PM allocation)

The allocation SPM computed by the formulas of previous section.

Theorem
The PM allocation is not a constant ratio approximation at α fixed.

p(t)= 6
PM schedule,
optimal with
previous model

M1 =
(2
3

)α
+ 4
3

0

2α

1

1

2α

0

2α

2α

1

1

1.5 3
0.75

0.75 1.5

3 0.75

0.75

Example of graph where the PM allocation is not optimal

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 16 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Consequence of the refinement

Definition (PM allocation)

The allocation SPM computed by the formulas of previous section.

Theorem
The PM allocation is not a constant ratio approximation at α fixed.

p(t)= 6
Better schedule
wpth
lprevious

M2 = 2<M1

(2
3

)α 0

2α

1

1

2α

0

2α

2α

1

1

2 2
1

1 2

2 1

1

Example of graph where the PM allocation is not optimal

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 16 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Consequence of the refinement

Definition (PM allocation)

The allocation SPM computed by the formulas of previous section.

Theorem
The PM allocation is not a constant ratio approximation at α fixed.

p(t)= 6

PM schedule,
optimal with
previous model

M1 =
(2
3

)α
+ 4
3

0

X

1

1

X

0

X

X

1

1

Example of graph where the PM allocation is not optimal

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 16 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Consequence of the refinement

Definition (PM allocation)

The allocation SPM computed by the formulas of previous section.

Theorem
The PM allocation is not a constant ratio approximation at α fixed.

p(t)= 6

PM schedule,
optimal with
previous model

M1 =
(2
3

)α
+ 4
3

0

X

1

1

X

0

X

X

1

1

Example of graph where the PM allocation is not optimal

Need to extend the study to more general allocations. . .

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 16 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

PFC allocations
Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the
restriction to pseudo-trees.

p(t)= 4

PFC schedules
M1(x ,α)> 2

0
1

1
1
1

2α

2α

0

Example of pseudo-tree graph illustrating the theorem

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 17 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

PFC allocations
Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the
restriction to pseudo-trees.

p(t)= 4
PFC schedules
M1(x ,α)> 2

0
1

1
1
1

2α

2α

0

x/3
x/3
x/3

4−x

x

4−x

Example of pseudo-tree graph illustrating the theorem

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 17 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

PFC allocations
Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the
restriction to pseudo-trees.

p(t)= 4
Better schedule
M2 = 2<M1(x ,α)

0
1

1
1
1

2α

2α

0

1
1
1

2

2

1

Example of pseudo-tree graph illustrating the theorem

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 17 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

PFC allocations
Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the
restriction to pseudo-trees.

Remark (best PFC allocation seen as an approximation)

Approximation ratio < p1−α.
For α= 1/2: approximation ratio > 1.09 −→ the exact ratio is unknown.

Remark

Possibility to check if a PFC allocation is the best one (existence of idle times). . .
. . . but not to compute it.

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 17 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Heuristic towards the computation of the best PFC allocation

Principle of the heuristic
In the PM schedule: makespan of tasks with pi < 1 is underestimated
Artificially increase their processor need
Goal: find Li from Li such that Li/pi =Li/pαi −→ Li :=Li ·pα−1i >Li

Iterative algorithm
1. Initialisation: G0 ←G
2. Repeat step k until (hoped) convergence:

Ï compute the PM schedule Sk of GkÏ modify the Li’s with pi < 1 to create Gk+1

Elements towards its correctness for α> 1/2

Convergence is proved on T1 ∥T2
Observations on random/selected graphs:

Ï For any graph G the heuristic converges
Ï Both ∆2k and ∆2k+1 decrease and converge to 0

∆k : largest idle time of Sk

Sk

1

2

4

3
5

∆k

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 18 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
The refinement and its consequences
Computing the best PFC allocation

Heuristic towards the computation of the best PFC allocation

Principle of the heuristic
In the PM schedule: makespan of tasks with pi < 1 is underestimated
Artificially increase their processor need
Goal: find Li from Li such that Li/pi =Li/pαi −→ Li :=Li ·pα−1i >Li

Iterative algorithm
1. Initialisation: G0 ←G
2. Repeat step k until (hoped) convergence:

Ï compute the PM schedule Sk of GkÏ modify the Li’s with pi < 1 to create Gk+1

Elements towards its correctness for α> 1/2

Convergence is proved on T1 ∥T2
Observations on random/selected graphs:

Ï For any graph G the heuristic converges
Ï Both ∆2k and ∆2k+1 decrease and converge to 0

∆k : largest idle time of Sk

Sk

1

2

4

3
5

∆k

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 18 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Description of the model
Complexity results

Outline

1 Introduction and notations

2 Minimizing the makespan

3 Minimizing the makespan with a modified speedup function

4 Minimizing the makespan and memory peak
Description of the model
Complexity results

5 Conclusion

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 19 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Description of the model
Complexity results

Description of the model
Memory: constraint on parallel platforms for direct sparse matrix factorization methods

Objective
Complexity results on schedules trying to minimize both makespan and memory peak

Assumptions on the instance of the problem

G is a tree, f (p)= pα and p(t) is constant
Tasks have output files
While executing a task, input and output files must be allocated
In our proofs: file sizes are equal to 1 and lengths to 0 or 1

T
1 1

1

Lemma (backbone of the following theorems)

Regardless general memory constraints, under the hypotheses:
G: k ×n independent tasks of length 1
p(t)= k ×p
processing more than k tasks simultaneously is forbidden

Minimum makespan is reached iff successive batches of k tasks are scheduled.

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 20 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Description of the model
Complexity results

Description of the model

time

kp kp

Illustration of the optimal schedule, for k = 3 and n= 5

Lemma (backbone of the following theorems)

Regardless general memory constraints, under the hypotheses:
G: k ×n independent tasks of length 1
p(t)= k ×p
processing more than k tasks simultaneously is forbidden

Minimum makespan is reached iff successive batches of k tasks are scheduled.

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 20 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Description of the model
Complexity results

NP-completeness of the bi-objective problem

The BiObjectiveParallelTreeScheduling problem

Given a valid instance: is there a schedule respecting
{
makespan<BCmax

}
and{

memory peak<Bmem
}
?

Theorem
The BiObjectiveParallelTreeScheduling problem is NP-Complete.

Proof.
Reduction from 3-Partition r

N1

T1
1 T1

2 T1
3ma1

N2

T2
1 T2

2 T2
3ma2

N3m

T3m
1 T3m

2 T3m
3ma3m

0

0 0 0 0 0 0 0 0 0

1 1 1

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 21 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak
Description of the model
Complexity results

Inapproximation results

Theorem (unbounded number of processors)

There is no algorithm that is both a β-approximation for the makespan and a
γ-approximation for the memory peak.

Theorem (fixed number of processors)

There is no algorithm with β(p) and γ(p) verifying:

γ(p)β(p)1−α ≤
(p
logp+1

)1−α

Remark (Comparison with previous bounds)

Without task parallelism [MSV13]:

γ(p)β(p)> 2p
dlogpe+2

Here, assuming α= 0:

γ(p)β(p)> p
logp+1

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 22 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Outline

1 Introduction and notations

2 Minimizing the makespan

3 Minimizing the makespan with a modified speedup function

4 Minimizing the makespan and memory peak

5 Conclusion

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 23 / 24

Minimizing the makespan
Minimizing the makespan with a modified speedup function

Minimizing the makespan and memory peak

Conclusion

Model f (p)= pα for all p

Results of [PM96] are proved using pure-scheduling arguments

Model f (p)= p for p < 1

PM schedules are not λ-approximations, PFC schedules are not optimal
A heuristic probably converges towards the PFC optimal schedule for α> 1/2

Memory-aware model
Deciding if there exists a schedule that respects a makespan and a memory
constraint is NP-complete
There is a lower bound over the approximation ratios, coherent with the
state-of-the-art bound without task parallelism

Bertrand Simon, Loris Marchal, Frédéric Vivien Scheduling Malleable Task Trees 24 / 24

	Minimizing the makespan
	Characterization of the optimal schedule
	Scheme of the proof of the theorem

	Minimizing the makespan with a modified speedup function
	The refinement and its consequences
	Computing the best PFC allocation

	Minimizing the makespan and memory peak
	Description of the model
	Complexity results

