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Introduction

Motivation
Solving sparse linear systems −→ sparse matrix factorizations

−→ task trees to be scheduled
Processing power available: homogeneous parallel platform
Need to schedule task trees using tree and task parallelism
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Definitions
task tree: structure defining precedence order, a node cannot begin before its
children are completed
tree parallelism: possibility to execute simultaneously several tasks
task parallelism: possibility to allocate several processors to a task
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Model and notations

Parameters of the problem

Need for a model of realist (imperfect) task parallelism: Malleable tasks [Le04]
Tree graph G (previous slide)
Processor profile: step function p(t), available number of processors at time t

Speedup f (= sequential time / parallel time)

f (p)= pα for 0<α< 1, p ∈R+ (non-integer processor shares: time-sharing techniques)

Advocated for matrix computations [PM96,BG07]
Processing time of task Ti on p processors: Li/pα

overestimation
of this model

1

1

speed-up

processors

α= 1
perfect parallelism

0<α< 1

α= 0
no parallelism
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Definition of schedules

Structure of schedules

Schedule S : piecewise continuous functions {t 7→ pi (t)} defined on [0,τ]

τ: makespan of S (supposed tight: not all pi (τ−ε) are null)

Ratio of work up to time t: wi (t)=
∫ t

0
pi (x)α dx

/
Li

Validity conditions of a schedule

Does not use more than p(t) processors at any time t: ∑
i pi (t)≤ p(t)

Completes all the tasks: ∀i , wi (τ)= 1
Respects the precedence order: ∀i , ∀t ∈ [0,τ], wi (t)> 0 =⇒ ∀j ∈Children(Ti ), wj (t)= 1

5

1

2
3

4

[0,τ]

p(t)
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Generalization of trees

Our objective: study trees
Next two sections: study a more general structure

Series Parallel graphs
Recursively defined by being either:

a single task
a parallel composition of two SP graphs
a series composition of two SP graphs

A tree can be extended to a SP graph.

T

T

1

2

4 65 3
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Statement of the problem

Context
Objects of interest: miminum-makespan schedules of a SP graph G
[PM96] proved the theorem below using heavy optimal control theory
Our objective: reprove it using pure-scheduling arguments

Theorem (Prasanna & Musicus)

Optimal schedules respect the Processor Flow Conservation property:
the ratio of processors given to each branch of any parallel node is constant.

G1

G2
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Consequences of the theorem

Corollary

Each task: alloted a constant ratio, independent of p(t)
its children terminate simultaneously

Each graph G is equivalent to the task of length LG recursively defined by:
Ï LTi =Li
Ï LG1 ;G2 =LG1 +LG2
Ï LG1 ∥G2 =

(
L

1/α
G1

+L
1/α
G2

)α
The (unique) optimal schedule SPM can be computed in polynomial time.

1 2

3 4

5
1
2

4

3 5

time

ratio of
p(t)

A tree G (particular SP graph) and the shape of its optimal schedule under any p(t)
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First step of the proof: pi(t)’s are step functions

A clean interval of a schedule S : a time interval during which no task terminates.

Lemma

If p(t)= p, optimal schedules have constant pi (t)’s on its clean intervals.

Proof.

Consider S with pj (t) not constant on a clean ∆ −→ S ′ with smaller makespan
Uses strict concavity of f : replace pi (t)’s by their mean

Get the inequality: W∆
j (S )=

∫
∆
pj (t)αdt <

∫
∆

( 1
∆

∫
∆
pj (t)dt

)α
dx

1

2
3

4

S

time

p =⇒
1

2
3

4

S ′

time

p
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For any G: let ri (t)= pi (t)/p(t) be the fraction of processors allocated to Ti .

Lemma

For G being T1 ∥T2, in optimal schedules: r1(t)=L1/α1
/

L
1/α
1∥2 .

Proof. (Note that p(t) is not necessarily constant)

Suppose S optimal with r1(t) not constant −→ S ′ with a smaller makespan
Properties used: strict concavity of f and ∀xy , f (xy)= f (x)f (y)

S

T2

T1

T1

T2

rA1

rB1

1

0

A B

=⇒
T2

T1 T1

T2

r1

1

0

S ′

A B

Details: with ApαA =BpαB and 2r1 = rA1 + rB1 ,(
rB1

)α−(r1)α

rB1 − r1
<
(r1)α−

(
rA1

)α
r1− rA1

=⇒ Apα
(
rA1

)α+Bqα
(
rB1

)α < rα1 (Apα+Bqα)
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End of the proof of the theorem

Few steps remaining to prove the theorem:

T1 ∥T2 under any p(t) ⇐⇒ T1∥2 of length L1∥2 under any p(t)
T1 ;T2 under any p(t) ⇐⇒ T1 ;2 of length L1 ;2 under any p(t)
Proof by induction on the structure of G

p(t)= 6

M =
(2
3

)α
+

(4
3

)α

0

2α

1

1

2α

0

2α

2α

1

1

Example of computed schedule
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Refinement of the model

Motivation: the previous model overestimates the speedup for p < 1

Modification of the speedup function

p ≥ 1: f (p)= pα p ≤ 1: f (p)= p

1

1

speed-up

processors

f (p)= p

f (p)= pα
new model

Consequences
The previous theorem does not hold.
We cannot compute the optimal schedule.
Restriction: assume p(t)= p in the following.
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Consequence of the refinement

Definition (PM allocation)

The allocation SPM computed by the formulas of previous section.

Theorem
The PM allocation is not a constant ratio approximation at α fixed.

p(t)= 6

PM schedule,
optimal with
previous model

M1 =
(2
3

)α
+ 4
3

0

2α

1

1

2α

0

2α

2α

1

1

Example of graph where the PM allocation is not optimal
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Need to extend the study to more general allocations. . .
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PFC allocations
Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the
restriction to pseudo-trees.

p(t)= 4

PFC schedules
M1(x ,α)> 2

0
1

1
1
1

2α

2α

0

Example of pseudo-tree graph illustrating the theorem
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PFC allocations
Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the
restriction to pseudo-trees.

Remark (best PFC allocation seen as an approximation)

Approximation ratio < p1−α.
For α= 1/2: approximation ratio > 1.09 −→ the exact ratio is unknown.

Remark

Possibility to check if a PFC allocation is the best one (existence of idle times). . .
. . . but not to compute it.
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Heuristic towards the computation of the best PFC allocation

Principle of the heuristic
In the PM schedule: makespan of tasks with pi < 1 is underestimated
Artificially increase their processor need
Goal: find Li from Li such that Li/pi =Li/pαi −→ Li :=Li ·pα−1i >Li

Iterative algorithm
1. Initialisation: G0 ←G
2. Repeat step k until (hoped) convergence:

Ï compute the PM schedule Sk of GkÏ modify the Li’s with pi < 1 to create Gk+1

Elements towards its correctness for α> 1/2

Convergence is proved on T1 ∥T2
Observations on random/selected graphs:

Ï For any graph G the heuristic converges
Ï Both ∆2k and ∆2k+1 decrease and converge to 0

∆k : largest idle time of Sk

Sk

1

2

4

3
5

∆k
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Description of the model
Memory: constraint on parallel platforms for direct sparse matrix factorization methods

Objective
Complexity results on schedules trying to minimize both makespan and memory peak

Assumptions on the instance of the problem

G is a tree, f (p)= pα and p(t) is constant
Tasks have output files
While executing a task, input and output files must be allocated
In our proofs: file sizes are equal to 1 and lengths to 0 or 1

T
1 1

1

Lemma (backbone of the following theorems)

Regardless general memory constraints, under the hypotheses:
G: k ×n independent tasks of length 1
p(t)= k ×p
processing more than k tasks simultaneously is forbidden

Minimum makespan is reached iff successive batches of k tasks are scheduled.
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kp kp

Illustration of the optimal schedule, for k = 3 and n= 5
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NP-completeness of the bi-objective problem

The BiObjectiveParallelTreeScheduling problem

Given a valid instance: is there a schedule respecting
{
makespan<BCmax

}
and{

memory peak<Bmem
}
?

Theorem
The BiObjectiveParallelTreeScheduling problem is NP-Complete.

Proof.
Reduction from 3-Partition r

N1

T1
1 T1

2 T1
3ma1

N2

T2
1 T2

2 T2
3ma2

N3m

T3m
1 T3m

2 T3m
3ma3m

0

0 0 0 0 0 0 0 0 0

1 1 1
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Inapproximation results

Theorem (unbounded number of processors)

There is no algorithm that is both a β-approximation for the makespan and a
γ-approximation for the memory peak.

Theorem (fixed number of processors)

There is no algorithm with β(p) and γ(p) verifying:

γ(p)β(p)1−α ≤
( p
logp+1

)1−α

Remark (Comparison with previous bounds)

Without task parallelism [MSV13]:

γ(p)β(p)> 2p
dlogpe+2

Here, assuming α= 0:

γ(p)β(p)> p
logp+1
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Minimizing the makespan and memory peak

Conclusion

Model f (p)= pα for all p

Results of [PM96] are proved using pure-scheduling arguments

Model f (p)= p for p < 1

PM schedules are not λ-approximations, PFC schedules are not optimal
A heuristic probably converges towards the PFC optimal schedule for α> 1/2

Memory-aware model
Deciding if there exists a schedule that respects a makespan and a memory
constraint is NP-complete
There is a lower bound over the approximation ratios, coherent with the
state-of-the-art bound without task parallelism
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