Scheduling Malleable Task Trees

Bertrand Simon Loris Marchal Frédéric Vivien

ENS Lyon

9th Scheduling for Large Scale Systems Workshop, Lyon 2014

Outline

- Introduction and notations
- Minimizing the makespan
 - Characterization of the optimal schedule
 - Scheme of the proof of the theorem
- Minimizing the makespan with a modified speedup function
 - The refinement and its consequences
 - Computing the best PFC allocation
- Minimizing the makespan and memory peak
 - Description of the model
 - Complexity results
- Conclusion

Outline

- Introduction and notations
- 2 Minimizing the makespan
- Minimizing the makespan with a modified speedup function
- Minimizing the makespan and memory peal
- Conclusion

Motivation

- Solving sparse linear systems → sparse matrix factorizations
 - → task trees to be scheduled
- Processing power available: homogeneous parallel platform
- Need to schedule task trees using tree and task parallelism

- task tree: structure defining precedence order, a node cannot begin before its children are completed
- tree parallelism: possibility to execute simultaneously several tasks
- task parallelism: possibility to allocate several processors to a task

Motivation

- Solving sparse linear systems → sparse matrix factorizations
 - → task trees to be scheduled
- Processing power available: homogeneous parallel platform
- Need to schedule task trees using tree and task parallelism

- task tree: structure defining precedence order, a node cannot begin before its children are completed
- tree parallelism: possibility to execute simultaneously several tasks
- task parallelism: possibility to allocate several processors to a task

Motivation

- Solving sparse linear systems → sparse matrix factorizations
 - → task trees to be scheduled
- Processing power available: homogeneous parallel platform
- Need to schedule task trees using tree and task parallelism

- task tree: structure defining precedence order, a node cannot begin before its children are completed
- tree parallelism: possibility to execute simultaneously several tasks
- task parallelism: possibility to allocate several processors to a task

Motivation

- Solving sparse linear systems → sparse matrix factorizations
 - → task trees to be scheduled
- Processing power available: homogeneous parallel platform
- Need to schedule task trees using tree and task parallelism

- task tree: structure defining precedence order, a node cannot begin before its children are completed
- tree parallelism: possibility to execute simultaneously several tasks
- task parallelism: possibility to allocate several processors to a task

Motivation

- Solving sparse linear systems → sparse matrix factorizations
 - → task trees to be scheduled
- Processing power available: homogeneous parallel platform
- Need to schedule task trees using tree and task parallelism

- task tree: structure defining precedence order, a node cannot begin before its children are completed
- tree parallelism: possibility to execute simultaneously several tasks
- task parallelism: possibility to allocate several processors to a task

Model and notations

Parameters of the problem

- Need for a model of realist (imperfect) task parallelism: Malleable tasks [Le04]
- Tree graph G (previous slide)
- Processor profile: step function p(t), available number of processors at time t

Speedup f (= sequential time / parallel time)

- $f(p) = p^{\alpha}$ for $0 < \alpha < 1$, $p \in \mathbb{R}^+$ (non-integer processor shares: time-sharing techniques) Advocated for matrix computations [PM96,BG07]
- Processing time of task T_i on p processors: L_i/p^{α}

Model and notations

Parameters of the problem

- Need for a model of realist (imperfect) task parallelism: Malleable tasks [Le04]
- Tree graph G (previous slide)
- Processor profile: step function p(t), available number of processors at time t

Speedup f (= sequential time / parallel time)

- $f(p) = p^{\alpha}$ for $0 < \alpha < 1$, $p \in \mathbb{R}^+$ (non-integer processor shares: time-sharing techniques) Advocated for matrix computations [PM96,BG07]
- Processing time of task T_i on p processors: L_i/p^{α}

Definition of schedules

Structure of schedules

- Schedule \mathcal{S} : piecewise continuous functions $\{t \mapsto p_i(t)\}$ defined on $[0,\tau]$
- τ : makespan of $\mathscr S$ (supposed tight: not all $p_i(\tau \varepsilon)$ are null)
- Ratio of work up to time t: $w_i(t) = \int_0^t p_i(x)^{\alpha} dx/L_i$

Validity conditions of a schedule

- Does not use more than p(t) processors at any time t: $\sum_i p_i(t) \le p(t)$
- Completes all the tasks: $\forall i, \ w_i(\tau) = 1$
- Respects the precedence order: $\forall i, \forall t \in [0, \tau], \ w_i(t) > 0 \implies \forall j \in Children(T_i), w_j(t) = 1$

Generalization of trees

Our objective: study trees

Next two sections: study a more general structure

Series Parallel graphs

Recursively defined by being either:

- a single task
- a parallel composition of two SP graphs
- a series composition of two SP graphs

A tree can be extended to a SP graph.

Τ

Generalization of trees

Our objective: study trees

Next two sections: study a more general structure

Series Parallel graphs

Recursively defined by being either:

- a single task
- a parallel composition of two SP graphs
- a series composition of two SP graphs

A tree can be extended to a SP graph.

Generalization of trees

Our objective: study trees

Next two sections: study a more general structure

Series Parallel graphs

Recursively defined by being either:

- a single task
- a parallel composition of two SP graphs
- a series composition of two SP graphs

A tree can be extended to a SP graph.

 G_1 ; G_2

Outline

- Introduction and notations
- Minimizing the makespan
 - Characterization of the optimal schedule
 - Scheme of the proof of the theorem
- Minimizing the makespan with a modified speedup function
- Minimizing the makespan and memory pea
- Conclusion

Statement of the problem

Context

- Objects of interest: miminum-makespan schedules of a SP graph G
- [PM96] proved the theorem below using heavy optimal control theory
- Our objective: reprove it using pure-scheduling arguments

Theorem (Prasanna & Musicus)

Optimal schedules respect the **Processor Flow Conservation property**: the ratio of processors given to each branch of any parallel node is constant.

Consequences of the theorem

Corollary

- Each task: alloted a constant ratio, independent of p(t) its children terminate simultaneously
- Each graph G is equivalent to the task of length \mathcal{L}_G recursively defined by:

$$\mathcal{L}_{T_i} = L_i$$

$$\mathcal{L}_{G_1; G_2} = \mathcal{L}_{G_1} + \mathcal{L}_{G_2}$$

$$\mathcal{L}_{G_1 \parallel G_2} = \left(\mathcal{L}_{G_1}^{1/\alpha} + \mathcal{L}_{G_2}^{1/\alpha}\right)^{\alpha}$$

ullet The (unique) optimal schedule \mathscr{S}_{PM} can be computed in polynomial time.

A tree G (particular SP graph) and the shape of its optimal schedule under any p(t)

First step of the proof: $p_i(t)$'s are step functions

A clean interval of a schedule \mathcal{S} : a time interval during which no task terminates.

Lemma

If p(t) = p, optimal schedules have constant $p_i(t)$'s on its clean intervals.

Proof

- ullet Consider $\mathscr S$ with $p_j(t)$ not constant on a clean $\Delta \longrightarrow \mathscr S'$ with smaller makespan
- Uses strict concavity of f: replace $p_i(t)$'s by their mean

• Get the inequality:
$$W_j^{\Delta}(\mathscr{S}) = \int_{\Delta} p_j(t)^{\alpha} dt < \int_{\Delta} \left(\frac{1}{\Delta} \int_{\Delta} p_j(t) dt\right)^{\alpha} dx$$

First step of the proof: $p_i(t)$'s are step functions

A clean interval of a schedule \mathcal{S} : a time interval during which no task terminates.

Lemma

If p(t) = p, optimal schedules have constant $p_i(t)$'s on its clean intervals.

Proof

- ullet Consider $\mathscr S$ with $p_j(t)$ not constant on a clean $\Delta \longrightarrow \mathscr S'$ with smaller makespan
- Uses strict concavity of f: replace $p_i(t)$'s by their mean

• Get the inequality:
$$W_j^{\Delta}(\mathscr{S}) = \int_{\Delta} p_j(t)^{\alpha} dt < \int_{\Delta} \left(\frac{1}{\Delta} \int_{\Delta} p_j(t) dt\right)^{\alpha} dx$$

First step of the proof: $p_i(t)$'s are step functions

A clean interval of a schedule \mathcal{S} : a time interval during which no task terminates.

Lemma

If p(t) = p, optimal schedules have constant $p_i(t)$'s on its clean intervals.

Proof

- ullet Consider $\mathscr S$ with $p_j(t)$ not constant on a clean $\Delta \longrightarrow \mathscr S'$ with smaller makespan
- Uses strict concavity of f: replace $p_i(t)$'s by their mean

• Get the inequality:
$$W_j^{\Delta}(\mathscr{S}) = \int_{\Delta} p_j(t)^{\alpha} dt < \int_{\Delta} \left(\frac{1}{\Delta} \int_{\Delta} p_j(t) dt\right)^{\alpha} dx$$

For any G: let $r_i(t) = p_i(t)/p(t)$ be the fraction of processors allocated to T_i .

Lemma

For G being $T_1 \parallel T_2$, in optimal schedules: $r_1(t) = L_1^{1/\alpha} / \mathcal{L}_{1\parallel 2}^{1/\alpha}$

Proof. (Note that p(t) is not necessarily constant

- Suppose $\mathscr S$ optimal with $r_1(t)$ not constant $\longrightarrow \mathscr S'$ with a smaller makespan
- Properties used: strict concavity of f and $\forall xy$, f(xy) = f(x)f(y)

Details: with $Ap_A^{\alpha}=Bp_B^{\alpha}$ and $2r_1=r_1^A+r_1^B$,

$$\frac{\left(r_{1}^{B}\right)^{\alpha}-\left(r_{1}\right)^{\alpha}}{r_{1}^{B}-r_{1}}<\frac{\left(r_{1}\right)^{\alpha}-\left(r_{1}^{A}\right)^{\alpha}}{r_{1}-r_{1}^{A}}\quad\Longrightarrow\quad Ap^{\alpha}\left(r_{1}^{A}\right)^{\alpha}+Bq^{\alpha}\left(r_{1}^{B}\right)^{\alpha}< r_{1}^{\alpha}\left(Ap^{\alpha}+Bq^{\alpha}\right)$$

For any G: let $r_i(t) = p_i(t)/p(t)$ be the fraction of processors allocated to T_i .

Lemma

For G being $T_1 \parallel T_2$, in optimal schedules: $r_1(t) = L_1^{1/\alpha} / \mathcal{L}_{1\parallel 2}^{1/\alpha}$

Proof. (Note that p(t) is not necessarily constant

- Suppose $\mathscr S$ optimal with $r_1(t)$ not constant $\longrightarrow \mathscr S'$ with a smaller makespan
- Properties used: strict concavity of f and $\forall xy$, f(xy) = f(x)f(y)

Details: with $Ap_A^{\alpha}=Bp_B^{\alpha}$ and $2r_1=r_1^A+r_1^B$,

$$\frac{\left(r_{1}^{B}\right)^{\alpha}-\left(r_{1}\right)^{\alpha}}{r_{1}^{B}-r_{1}}<\frac{\left(r_{1}\right)^{\alpha}-\left(r_{1}^{A}\right)^{\alpha}}{r_{1}-r_{1}^{A}}\quad\Longrightarrow\quad Ap^{\alpha}\left(r_{1}^{A}\right)^{\alpha}+Bq^{\alpha}\left(r_{1}^{B}\right)^{\alpha}< r_{1}^{\alpha}\left(Ap^{\alpha}+Bq^{\alpha}\right)$$

For any G: let $r_i(t) = p_i(t)/p(t)$ be the fraction of processors allocated to T_i .

Lemma

For G being $T_1 \parallel T_2$, in optimal schedules: $r_1(t) = L_1^{1/\alpha} / \mathcal{L}_{1 \parallel 2}^{1/\alpha}$.

Proof. (Note that p(t) is not necessarily constant)

- Suppose $\mathscr S$ optimal with $r_1(t)$ not constant $\longrightarrow \mathscr S'$ with a smaller makespan
- Properties used: strict concavity of f and $\forall xy$, f(xy) = f(x)f(y)

Details: with $Ap_A^{\alpha}=Bp_B^{\alpha}$ and $2r_1=r_1^A+r_1^B$,

$$\frac{\left(r_{1}^{B}\right)^{\alpha}-\left(r_{1}\right)^{\alpha}}{r_{1}^{B}-r_{1}}<\frac{\left(r_{1}\right)^{\alpha}-\left(r_{1}^{A}\right)^{\alpha}}{r_{1}-r_{1}^{A}}\quad\Longrightarrow\quad Ap^{\alpha}\left(r_{1}^{A}\right)^{\alpha}+Bq^{\alpha}\left(r_{1}^{B}\right)^{\alpha}<\frac{r_{1}^{\alpha}\left(Ap^{\alpha}+Bq^{\alpha}\right)}{r_{1}^{\alpha}-r_{1}^{\alpha}}$$

End of the proof of the theorem

Few steps remaining to prove the theorem:

- $T_1 \parallel T_2$ under any $p(t) \iff T_1 \parallel_2$ of length $\mathcal{L}_1 \parallel_2$ under any p(t)
- T_1 ; T_2 under any $p(t) \iff T_{1:2}$ of length $\mathcal{L}_{1:2}$ under any p(t)
- Proof by induction on the structure of G

•
$$p(t) = 6$$

Example of computed schedule

Few steps remaining to prove the theorem:

- $T_1 \parallel T_2$ under any $p(t) \iff T_1 \parallel_2$ of length $\mathcal{L}_1 \parallel_2$ under any p(t)
- T_1 ; T_2 under any $p(t) \iff T_{1:2}$ of length $\mathcal{L}_{1:2}$ under any p(t)
- Proof by induction on the structure of G

•
$$p(t) = 6$$

• $M = \left(\frac{2}{3}\right)^{\alpha} + \left(\frac{4}{3}\right)^{\alpha}$

Example of computed schedule

Outline

- Introduction and notations
- 2 Minimizing the makespan
- Minimizing the makespan with a modified speedup function
 - The refinement and its consequences
 - Computing the best PFC allocation
- Minimizing the makespan and memory peak
- Conclusion

Refinement of the model

Motivation: the previous model overestimates the speedup for p < 1

Modification of the speedup function

•
$$p \ge 1$$
: $f(p) = p^{\alpha}$

•
$$p \le 1$$
: $f(p) = p$

Consequences

The previous theorem does not hold.

We cannot compute the optimal schedule.

Restriction: assume p(t) = p in the following.

Definition (PM allocation)

The allocation \mathcal{S}_{PM} computed by the formulas of previous section.

Theorem

The PM allocation is not a constant ratio approximation at α fixed.

•
$$p(t) = 6$$

Definition (PM allocation)

The allocation \mathcal{S}_{PM} computed by the formulas of previous section.

Theorem

The PM allocation is not a constant ratio approximation at α fixed.

- p(t) = 6
- PM schedule, optimal with previous model
- $M_1 = \left(\frac{2}{3}\right)^{\alpha} + \frac{4}{3}$

Definition (PM allocation)

The allocation \mathcal{S}_{PM} computed by the formulas of previous section.

Theorem

The PM allocation is not a constant ratio approximation at α fixed.

- p(t) = 6
- Better schedule

• $M_2 = 2 < M_1$

Definition (PM allocation)

The allocation \mathcal{S}_{PM} computed by the formulas of previous section.

Theorem

The PM allocation is not a constant ratio approximation at α fixed.

•
$$p(t) = 6$$

Definition (PM allocation)

The allocation \mathcal{S}_{PM} computed by the formulas of previous section.

Theorem

The PM allocation is not a constant ratio approximation at α fixed.

•
$$p(t) = 6$$

Example of graph where the PM allocation is not optimal

Need to extend the study to more general allocations...

Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the restriction to pseudo-trees.

•
$$p(t) = 4$$

Example of pseudo-tree graph illustrating the theorem

Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the restriction to pseudo-trees.

- p(t) = 4
- PFC schedules
- $M_1(x,\alpha) > 2$

Example of pseudo-tree graph illustrating the theorem

Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the restriction to pseudo-trees.

- p(t) = 4
- Better schedule
- $M_2 = 2 < M_1(x, \alpha)$

Example of pseudo-tree graph illustrating the theorem

Need for a more general structure, close to an optimal solution, and simple to study

Definition (PFC allocation)

An allocation that allocates a constant ratio to each subgraph at every parallel node.

Theorem

The (unique) best PFC allocation is not always the optimal schedule, even in the restriction to pseudo-trees.

Remark (best PFC allocation seen as an approximation)

Approximation ratio $< p^{1-\alpha}$.

For $\alpha = 1/2$: approximation ratio > 1.09 \longrightarrow the exact ratio is unknown.

Remark

Possibility to check if a PFC allocation is the best one (existence of idle times)...
... but not to compute it.

Heuristic towards the computation of the best PFC allocation

Principle of the heuristic

- In the PM schedule: makespan of tasks with $p_i < 1$ is underestimated
- Artificially increase their processor need
- Goal: find \overline{L}_i from L_i such that $L_i/p_i = \overline{L_i}/p_i^{\alpha}$ \longrightarrow $\overline{L_i} := L_i \cdot p_i^{\alpha-1} > L_i$

Iterative algorithm

- 1. Initialisation: $G_0 \leftarrow G$
- 2. Repeat step k until (hoped) convergence:
 - compute the PM schedule \mathcal{S}_k of G_k
 - modify the L_i 's with $p_i < 1$ to create G_{k+1}

Elements towards its correctness for $\alpha > 1/2$

- Convergence is proved on $T_1 \parallel T_2$
- Observations on random/selected graphs:
 - For any graph G the heuristic converges
 - Both Δ_{2k} and Δ_{2k+1} decrease and converge to 0 $\Delta_k: \text{largest idle time of } \mathcal{S}_k$

Heuristic towards the computation of the best PFC allocation

Principle of the heuristic

- In the PM schedule: makespan of tasks with $p_i < 1$ is underestimated
- Artificially increase their processor need
- Goal: find \overline{L}_i from L_i such that $L_i/p_i = \overline{L_i}/p_i^{\alpha}$ \longrightarrow $\overline{L_i} := L_i \cdot p_i^{\alpha-1} > L_i$

Iterative algorithm

- 1. Initialisation: $G_0 \leftarrow G$
- 2. Repeat step k until (hoped) convergence:
 - compute the PM schedule \mathcal{S}_k of G_k
 - modify the L_i 's with $p_i < 1$ to create G_{k+1}

Elements towards its correctness for $\alpha > 1/2$

- Convergence is proved on $T_1 \parallel T_2$
- Observations on random/selected graphs:
 - For any graph G the heuristic converges
 - ▶ Both Δ_{2k} and Δ_{2k+1} decrease and converge to 0

 Δ_k : largest idle time of \mathcal{S}_k

Outline

- Introduction and notations
- Minimizing the makespan
- Minimizing the makespan with a modified speedup function
- Minimizing the makespan and memory peak
 - Description of the model
 - Complexity results
- Conclusion

Description of the model

Memory: constraint on parallel platforms for direct sparse matrix factorization methods

Objective

Complexity results on schedules trying to minimize both makespan and memory peak

Assumptions on the instance of the problem

- G is a tree, $f(p) = p^{\alpha}$ and p(t) is constant
- Tasks have output files
- While executing a task, input and output files must be allocated
- In our proofs: file sizes are equal to 1 and lengths to 0 or 1

Lemma (backbone of the following theorems)

Regardless general memory constraints, under the hypotheses:

- G: k × n independent tasks of length 1
- $p(t) = k \times p$
- processing more than k tasks simultaneously is forbidden

Minimum makespan is reached **iff** successive batches of k tasks are scheduled.

Description of the model

Illustration of the optimal schedule, for k = 3 and n = 5

Lemma (backbone of the following theorems)

Regardless general memory constraints, under the hypotheses:

- G: k × n independent tasks of length 1
- $p(t) = k \times p$
- processing more than k tasks simultaneously is forbidden

Minimum makespan is reached iff successive batches of k tasks are scheduled.

NP-completeness of the bi-objective problem

The BiObjectiveParallelTreeScheduling problem

Given a valid instance: is there a schedule respecting $\{makespan < B_{C_{max}}\}$ and $\{memory\ peak < B_{mem}\}$?

Theorem

The BiObjectiveParallelTreeScheduling problem is NP-Complete.

Inapproximation results

Theorem (unbounded number of processors)

There is no algorithm that is both a β -approximation for the makespan and a γ -approximation for the memory peak.

Theorem (fixed number of processors)

There is no algorithm with $\beta(p)$ and $\gamma(p)$ verifying:

$$\gamma(p)\beta(p)^{1-\alpha} \le \left(\frac{p}{\log p + 1}\right)^{1-\alpha}$$

Remark (Comparison with previous bounds)

Without task parallelism [MSV13]:

$$\gamma(p)\beta(p) > \frac{2p}{\lceil \log p \rceil + 2}$$

Here, assuming $\alpha = 0$:

$$\gamma(p)\beta(p) > \frac{p}{\log p + 1}$$

Outline

- Introduction and notations
- Minimizing the makespan
- Minimizing the makespan with a modified speedup function
- Minimizing the makespan and memory pea
- Conclusion

Conclusion

Model $f(p) = p^{\alpha}$ for all p

• Results of [PM96] are proved using pure-scheduling arguments

Model f(p) = p for p < 1

- PM schedules are not λ -approximations, PFC schedules are not optimal
- A heuristic probably converges towards the PFC optimal schedule for $\alpha > 1/2$

Memory-aware model

- Deciding if there exists a schedule that respects a makespan and a memory constraint is NP-complete
- There is a lower bound over the approximation ratios, coherent with the state-of-the-art bound without task parallelism