

9th Scheduling for Large Scale Systems Workshop

Lyon, France

July 2014

7/1/201

4

Coping with Complexity:

CPUs, GPUs and Real-world Applications

Leonel Sousa,
Frederico Pratas, Svetislav Momcilovic and Aleksandar Ilic

1

Motivation

7/1/201

4

• Commodity computers = Heterogeneous systems
– Multi-core General Purpose Processors (CPUs)

– Graphics Processing Units (GPUs)

– Special accelerators, co-processors, FPGAs, mobile and wearable
systems

• Significant computing power
– Not yet fully exploited for efficient collaborative computing

• Heterogeneity makes it really difficult!
– Applications, devices, interconnects, systems…

– Performance modeling and load balancing for efficient computing

I is variable 2

Outline

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Multi-module Applications • Node: CPU+GPU platform

• Device: multicore CPUs • General (FP) Applications • Performance modeling

• Load Balancing

3

Outline

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Multi-module Applications • Node: CPU+GPU platform

• Device: multicore CPUs • General (FP) Applications • Performance modeling

• Load Balancing

4

application- and hardware-specific

hardware-specific

Outline

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Node: CPU+GPU platform

• Device: multicore CPUs • General (FP) Applications • Performance modeling

• Load Balancing

6

• Multi-module Applications

Node: CPU+GPU platform

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

CORE 0

L1 Cache

L2 Cache

CORE 1

L1 Cache

L2 Cache

CORE 2

L1 Cache

L2 Cache

CORE 3

L1 Cache

L2 Cache

L3 Cache

Ring interconnect

S
ys

te
m

 A
g
en

t

(D
R
A

M
 C

o
n
tr

o
ll
er

, P
C
Ie

..
.)

Unified L2 Cache

Raster Engine

Graphics Processing Cluster

SM

L1

SM

L1

SM

L1

SM

L1

Raster Engine

Graphics Processing Cluster

SM

L1

SM

L1

SM

L1

SM

L1

Raster Engine

SM

L1

SM

L1

SM

L1

SM

L1

Raster Engine

SM

L1

SM

L1

SM

L1

SM

L1
V
D

R
A
M

V
D

R
A
M

V
D

R
A
M

V
D

R
A
M

V
D

R
A

M
H
o
st

 I
n
te

rf
a
ce

G
ig

a
T
h
re

a
d

V
D

R
A

M

• Multi-core CPU (Master)

– Replication of identical cores

– Memory hierarchy: private and shared caches

– Programming: OpenMP, Pthreads, OpenCL

• GPUs/Accelerators (distant workers)

– Large number of “simple” cores

– Complex memory hierarchy: global/local/shared

– Programming: CUDA, OpenCL

7

Node: CPU+GPU platform

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

CORE 0

L1 Cache

L2 Cache

CORE 1

L1 Cache

L2 Cache

CORE 2

L1 Cache

L2 Cache

CORE 3

L1 Cache

L2 Cache

L3 Cache

Ring interconnect

S
ys

te
m

 A
g
en

t

(D
R
A

M
 C

o
n
tr

o
ll
er

, P
C
Ie

..
.)

Unified L2 Cache

Raster Engine

Graphics Processing Cluster

SM

L1

SM

L1

SM

L1

SM

L1

Raster Engine

Graphics Processing Cluster

SM

L1

SM

L1

SM

L1

SM

L1

Raster Engine

SM

L1

SM

L1

SM

L1

SM

L1

Raster Engine

SM

L1

SM

L1

SM

L1

SM

L1
V
D

R
A
M

V
D

R
A
M

V
D

R
A
M

V
D

R
A
M

V
D

R
A

M
H
o
st

 I
n
te

rf
a
ce

G
ig

a
T
h
re

a
d

V
D

R
A

M

Interconnection Buses

CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

• Multi-core CPU (Master)

– Replication of identical cores

– Memory hierarchy: private and shared caches

– Programming: OpenMP, PThreads, OpenCL

• GPUs/Accelerators (distant workers)

– Large number of “simple” cores

– Complex memory hierarchy: global/local/shared

– Programming: CUDA, OpenCL

– Configuration: Maxeler data-flow engines

• Collaborative CPU+GPU execution

– Architectural diversity and programmability

– Code parallelization on a per device basis

– Integration into a single unified environment

(OpenCL, StarPU, StarSs, CHPS, …)

8

Interconnection Buses

Node: CPU+GPU platform

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

CORE 2

GPU 1

• GPU vs. CPU performance:

– GPU usually much faster, but not for all problems

– Performance might differ by orders of magnitude

– Accurate performance modeling is required!

Full models with MKL/CUBLAS (column-based 1D dgemm)

1 CPU Core (Intel i7 950)

GPU_T (NVIDIA GTX285)

GPU_F (NVIDIA GTX580)

9

Interconnection Buses

Node: CPU+GPU platform

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

• GPU vs. CPU performance:

– GPU usually much faster, but not for all problems

– Performance might differ by orders of magnitude

• GPUs are connected via PCI Express

– Bidirectional lines

– Asymmetric bandwidth (in different directions)

10

Interconnection Buses

Node: CPU+GPU platform

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

CORE 0

GPU 0

• GPU vs. CPU performance:

– GPU usually much faster, but not for all problems

– Performance might differ by orders of magnitude

• GPUs are connected via PCI Express

– Bidirectional lines

– Asymmetric bandwidth (in different directions)

• GPUs are co-processors

– CPU Core/Thread initiates all data-transfers and

GPU kernel calls

– Core is usually completely devoted (underused)

11

Interconnection Buses

Node: CPU+GPU platform

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

• GPU vs. CPU performance:

– GPU usually much faster, but not for all problems

– Performance might differ by orders of magnitude

• GPUs are connected via PCI Express

– Bidirectional lines

– Asymmetric bandwidth (in different directions)

• GPUs are co-processors

– CPU Core/Thread initiates all data-transfers and

GPU kernel calls

– Core is usually completely devoted (underused)

• GPUs do not benefit from paging

– Limited global memory!
GPU 2

12

Outline

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Node: CPU+GPU platform

• Device: multicore CPUs • General (FP) Applications • Performance modeling

• Load Balancing

13

- Divisible Load Applications

- H.264/AVC Video Encoding

(inter-prediction mode)

• Multi-module Applications

• Discretely Divisible Load (DDL) Applications

– Computations divisible into pieces of arbitrary sizes (integers)

– Fractions independently processed in parallel with no precedence constraints

• Applicable to a wide range of scientific problems

– Linear algebra, digital signal and image processing, database applications …

• State of the art approaches in Heterogeneous Distributed Computing

– Assume symmetric bandwidth and an one-port model for communication links

– Limited memory: only input load size is considered; exceeding load simply redistributed

– Computation/communication time is not always a linear/affine function of the #chunks

– Single-level load balancing solutions

N

Divisible Load Processing

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

14

• Single-Module Applications

• Multi-module Applications

M2: load balancing, modeling… M1: load balancing, modeling…

Divisible Load Processing

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Input

Data

K
e
rn

e
l

CPU

GPU

Output

Data

Input

M1

M
1

CPU

GPU

M
2

CPU

GPU

Output

M2

repartitioning

Out/Input

Data

15

• Single-Module Applications

• Multi-module Applications

– Data-dependencies, multiple input/output buffers, shared access to data buffers

Divisible Load Processing

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Input

Data

K
e
rn

e
l

CPU

GPU

Output

Data

Input

M1

M
1

CPU

GPU

Output

M1

M
2

CPU

GPU

Input

M2

M
3

CPU

GPU

Output

M2

Output

M3
…

16

• H.264/AVC Video Encoding

Divisible Load Processing

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

di

CF RF

ME INTdi di

MVm SF

SME

di

di

MVs

• max. 6% on GPU (8.5% CPU)

• Dijkstra algorithm

R* modules

• min. 94% on GPU (92% CPU)

• Load balancing and modeling

ME+INT+SME

• Adaptive real-time video

encoding for HD sequences:

- Multi-module load balancing

- Simultaneous inter-prediction load

balancing

- Communication minimization

(shared data buffers)

17

Outline

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

• Node: CPU+GPU platform

• Device: multicore CPUs • General (FP) Applications • Performance modeling

18

- Divisible Load Applications

- H.264/AVC Video Encoding

(inter-prediction mode)

• Multi-module Applications

 - FEVES -
Framework for Efficient parallel Video

Encoding on heterogeneous Systems

• Load Balancing P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

FEVES: General Layout

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 19

• FEVES: Unified CPU+GPU encoding framework

– for collaborative inter-loop video encoding (extendable)

– organized in several functional blocks

 Framework control provides the key functionality

– interacts with other blocks

 Video Coding Manager orchestrates collaborative execution

– invokes respective implementations of Parallel Modules

– automatic Data Access Management between DRAM and local memories

 Load Balancing with online Performance Characterization

– provides multi-module workload distributions for collaborative processing
Multi-core CPUs

GPU1
GPU2

GPU3

FRAMEWORK CONTROL

Load Balancing
Performance

Characterization

Video Coding Manager

Parallel Modules

(CPU, GPU, …)

Data Access

Management

Heterogeneous Devices DRAM

UNIFIED FRAMEWORK

FEVES: Framework Control

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 20

• Framework Control

FRAMEWORK CONTROL

Load Balancing
Performance

Characterization

Video Coding Manager

Parallel Modules

(CPU, GPU, …)

Data Access

Management

Heterogeneous Devices DRAM

UNIFIED FRAMEWORK

Multi-core CPUs

GPU1
GPU2

GPU3

① Detect available devices (number, type, capabilities)

② Instantiate respective Parallel Modules (CPU+GPU)

③ Configure Video Coding and Data Access Manager

④ Equidistant partitioning for ME, INT and SME

⑤ Execute and record execution/transfer time

⑥ Initial Performance characterization for each

device/module speeds and asymmetric bandwidth of

PCIe links
In

it
ia

li
z
a
ti

o
n

for each frame do

① Determine load distributions with Load Balancing based

on Performance Characterization

② Execute modules with Video Coding Manager, Data

Access Management and Parallel Modules

③ Record execution and transfer times and update

Performance characterization

It
e

ra
ti

v
e

 p
h

a
s

e

FEVES: Video Coding Manager

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 21

 Video Coding Manager orchestrates collaborative CPU+GPU video encoding

– automatically configured according to detected device capabilities (initialization phase), e.g., the amount of supported

concurrency between computation and communication for GPU devices

– invokes highly optimized CPU and GPU implementations for the Library of Parallel Modules (SSE/AVX, Fermi/Kepler…)

– allows automatic Data Access Management between DRAM and local memories

 Collaborative Video Encoding orchestration

– Module executions and respective data transfers are invoked in a predefined order to ensure correctness of encoding

– In respect to inherent data-dependencies in H.264/AVC encoding several synchronization points are defined:

• t1 – reflects the dependency of SME module on the outputs of ME and INT modules

• t2 – marks the completion of SME module and beginning of R* processing

• ttot – encoding of a current frame is completed (R* modules executed on single fastest device, e.g., GPU1)

FRAMEWORK CONTROL

Load Balancing
Performance

Character.

Video Coding Manager

Parallel Modules
Data Access

Management

Heterogeneous Devices DRAM

UNIFIED FRAMEWORK

FEVES: Data Access Management

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 22

 Data Access Management for automatic data transfers and device memory management

– functionality strictly depends on the decisions from the Load Balancing block (load distributions)

– simultaneously tracks the state of several input/output buffers:

• current frame (CF), interpolated sub-frame (SF), motion vectors from ME (MV ME) and SME (MV SME), reference frame (RF)

– determines on the size of data transfers, their order, and exact position within the respective buffer

– provides communication minimization when several modules access to the same shared buffer

CF ME ME

INT SF(RF) SME SF(RF) SME

MV SME

MV SMECF SME SME MV MC

RF

τ1 τ2 τt ot

mi-1

mi

H D
mi-1

mi

si-1

si

H D

H D

li-1

li

si-1

si

H D

H D

mi-1

mi

D H

li-1

li

produced

mi-1

mi

si-1

si

H D

H D

produced

si-1

si

li-1

li

D H

mi-1

mi

produced

si-1

si

D H

li-1

li

si-1

si

H D

H D

SF(RF) SME+1

li-1

li

si-1

H D**

H D**

MV ME

CF

SF

MV SME

H D

SF(RF-1) SME**

RF

si

GPUi

∆ m
i

∆ l
i

∆ m
i

σiσr
i

FRAMEWORK CONTROL

Load Balancing
Performance

Character.

Video Coding Manager

Parallel Modules
Data Access

Management

Heterogeneous Devices DRAM

UNIFIED FRAMEWORK

FEVES: Load Balancing

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 23

 Load Balancing based on linear

programming to determine:

– cross-device load distributions for

ME, INT and SME modules

– amount of data transfers across different

devices for shared buffers

– communication minimization

– minimizes total collaborative

CPU+GPU video encoding time

FRAMEWORK CONTROL

Load Balancing
Performance

Character.

Video Coding Manager

Parallel Modules
Data Access

Management

Heterogeneous Devices DRAM

UNIFIED FRAMEWORK

CPU Core

GPU1

performs

R* modules

GPUi

accelerator/

distant worker

communication

minimization

Performance Characterization
(updated at runtime)

FEVES: Experimental results

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 24

 Scalable over both search area (SA) size and the number of reference frames (RF)

 Highly optimized parallel modules (CPU_H 1.7x faster than CPU_N; GPU_K 2x than GPU_F)

 Real-time encoding on SysHK: for 64x64 SA size (1 RF) and up to 4 RFs for 32x32 SA

 Average speedup on SysNFF: 5x vs. CPU_N and 2.2x vs. GPU_F

0	

10	

20	

30	

40	

50	

60	

32x32	 64x64	 128x128	 256x256	

P
e
rf
o
rm

an
ce
	[
fp
s]
	

Search	Area	Size	[pixels]	

CPU_N	 CPU_H	

GPU_F	 GPU_K	

SysNF	 SysNFF	

SysHK	

0	

10	

20	

30	

40	

50	

60	

1	 2	 3	 4	 5	 6	 7	 8	

P
e
rf
o
rm

an
ce
	[
fp
s]
	

Number	of	Reference	Frames	

CPU_N	 CPU_H	

GPU_F	 GPU_K	

SysNF	 SysNFF	

SysHK	

Real-time video encoding for full HD (1080p) video sequences

Devices Heterogeneous Systems

CPU_N Intel Nehalem i7 950 SysNF CPU_N + GPU_F

CPU_H Intel Haswell i7 4770K SysNFF CPU_N + 2xGPU_F

GPU_F NVIDIA Fermi GTX580 SysHK CPU_H + GPU_K

GPU_K NVIDIA Kepler GTX780Ti

FEVES: Experimental results

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on

Heterogeneous Systems”, in ICPP-2014 25

 Real-time encoding for up to 4 RFs for 32x32 SA on SysHK (Intel i7 4770K + NVIDIA

GTX780Ti)

 Load Balancing capable of efficiently coping with increasing problem complexity

 Dynamic Performance Characterization allows adaptation to the current state of the

platform

Real-time video encoding for 1080p “Rolling Tomatoes” sequence (first 100 frames)

0	

20	

40	

60	

0	 5	 10	 15	 20	 25	 30	 35	 40	 45	 50	 55	 60	 65	 70	 75	 80	 85	 90	 95	 100	

Ti
m
e
	[
m
s]
	

Frame	Number	

1RF	 2RF	 3RF	 4RF	 5RF	

Real- me	video	encoding	

Outline

7/1/201

4

• Node: CPU+GPU platform

26

- Divisible Load Applications

- H.264/AVC Video Encoding

(inter-prediction mode)

• Multi-module Applications

 - FEVES -
Framework for Efficient parallel Video

Encoding on heterogeneous Systems

• Load Balancing P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Device: multicore CPUs • General (FP) Applications • Performance modeling

Systems and Devices Modeling and Load Balancing

Where? How?

Applications

What?

Outline

7/1/201

4

• Node: CPU+GPU platform

27

- Divisible Load Applications

- H.264/AVC Video Encoding

(inter-prediction mode)

• Multi-module Applications

 - FEVES -
Framework for Efficient parallel Video

Encoding on heterogeneous Systems

• Load Balancing P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Device: multicore CPUs • General (FP) Applications • Cache-aware Roofline Model

Systems and Devices Modeling and Load Balancing

Where? How?

Applications

What?

- Performance and Total Performance

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

• Performance: Computations (flops) and communication (bytes) overlap in

time

Original Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

COMPUTE-BOUND

REGION

MEMORY-BOUND

REGION

Intel 3770K

(Ivy Bridge)

Original Roofline Model*

(state of the art)

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
28

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Original Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

0.125	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	0.03125	 0.125	 0.5	 2	 8	 32	 128	 512	 2048	 8192	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

APP-D	

ADD/MUL	

MAD	(Maximum	Performance	Fp)	

Pe
ak
	D
RA
M

LL
C	b
an
dw
id
th
	

I=16	

I is constant

I=(Σfι)/(Σbι)

f

b

APP-D (data traffic from DRAM)

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
29

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Original Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b

f

APP-L3 (data fits in L3)

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
30

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Original Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b=0

f

APP-L3 (data fits in L3)

I2=(f1+f2)/b1

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
31

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Original Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I1=f1/b1

b=0

f

APP-L3 (data fits in L3)

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
32

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Original Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

b

f

APP-L1 (data fits in L1)

I1=f1/b1

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
33

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

Original Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

b

I1=f1/b1

I2=(f1+f2)/b1

Ii=(Σfi)/b1

I is variable
I varies with the problem

size. Memory bound

becomes compute bound.

Fixed I - unexpected

performance for

different $ levels

Does not achieve

maximum attainable

performance

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”,

Communications of the ACM (2009)
34

• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)

• Performance: Computations (flops) and communication (bytes) overlap in

time

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

filling the

pipeline

35

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Memory bandwidth variation Performance variation

36

Cache-aware Roofline Model

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Memory bandwidth Performance variation

7/1/201

4
37

Cache-aware Roofline Model

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Memory bandwidth Performance variation

7/1/201

4
38

Cache-aware Roofline Model

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Memory bandwidth Performance variation

7/1/201

4
39

Cache-aware Roofline Model

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

0.125	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	0.03125	 0.125	 0.5	 2	 8	 32	 128	 512	 2048	 8192	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

ADD/MUL	

MAD	(Maximum	Performance	Fp)	

Pe
ak
	L1
	b
an
dw
id
th
	(L
1

C)
	

	L2
Co
re
	

L3
Co
re
	

DR
AM

	
	LL
C	
	

DR
AM

Co
re
	

Memory bandwidth Performance variation

7/1/201

4
40

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

Cache-aware Roofline Model*

[proposed]

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

41

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX MAD)

42

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

Intel 3770K

(Ivy Bridge)

4 Cores

(AVX ADD/MUL)

43

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

4 Cores

(SSE)

44

• Insightful single plot model
- Shows performance limits of multicores

- Redefined OI: flops and bytes as seen by core

- Constructed once per architecture

• Considers complete memory hierarchy
- Influence of caches and DRAM to performance

• Applicable to other types of operations
- not only floating-point

• Useful for:
- Application characterization and optimization

- Architecture development and understanding

Cache-aware Roofline Model

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

• Total Cache-aware Roofline Model

- Includes all transitional states (traversing the

memory hierarchy and filling the pipeline)

- Single-plot modeling for different types of

compute and memory operations

4 Cores

(DBL)

45

Cache-aware Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-D (data traffic from DRAM)

0.125	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	0.03125	 0.125	 0.5	 2	 8	 32	 128	 512	 2048	 8192	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

APP-D	

ADD/MUL	

MAD	(Maximum	Performance	Fp)	

Pe
ak
	D
RA
M

LL
C	b
an
dw
id
th
	

I=16	

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

46

Cache-aware Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

47

Cache-aware Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

48

Cache-aware Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L3 (fits in L3)

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

49

Cache-aware Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L1 (fits in L1)

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

50

Cache-aware Roofline Model: Hands On

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Intel 3770K

(Ivy Bridge)

I is constant

I=(Σfι)/(Σbι)

f b

APP-L1 (fits in L1)

Achieves maximum

attainable performance is

always memory bound.

‘I’ does not vary. The

performance tends to the

cache level ceiling.

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

51

Practical Example: Dense Matrix Multiplication

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

1) Basic implementation: All matrices stored in row-major order.

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

Cache-aware Roofline Model Original Roofline Model

application is in the compute bound region

mainly limited by DRAM

can be optimized to hit higher cache levels

1 1

application is in the memory bound region

mainly limited by DRAM

can be optimized up to the slanted part of the

model

52

Practical Example: Dense Matrix Multiplication

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

1) Basic implementation: All matrices stored in row-major order.

Cache-aware Roofline Model Original Roofline Model

application is in the compute bound region

almost hits L3

can be further optimized to hit higher cache levels

1 1

application is in the memory bound region

performance hits the roof of the model

the model suggests that the optimization

process is finished

2) Transposition: One matrix is transposed into column-major

2 2

53

Practical Example: Dense Matrix Multiplication

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

1) Basic implementation: All matrices stored in row-major order

2) Transposition: One matrix is transposed into column-major

3) Blocking for L3: All matrices are blocked to efficiently exploit L3

4) Blocking for L2: Second level of blocking to efficiently exploit L2

5) Blocking for L1: Data is further blocked to exploit L1

Cache-aware Roofline Model Original Roofline Model

performance is further improved breaking the cache

level ceilings towards the roof

1 1

optimization process finished

2 2
3, 4, 5

54

Practical Example: Dense Matrix Multiplication

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/DRAM	Byte]	

0.25	

0.5	

1	

2	

4	

8	

16	

32	

64	

128	

0.0078125	 0.0625	 0.5	 4	 32	 256	 2048	 16384	 131072	 1048576	 8388608	

P
e
rf
o
rm

an
ce
	[
G
Fl
o
p
s/
s]
	

Opera onal	Intensity	[Flops/Byte]	

1) Basic implementation: All matrices stored in row-major order

2) Transposition: One matrix is transposed into column-major

3) Blocking for L3: All matrices are blocked to efficiently exploit L3

4) Blocking for L2: Second level of blocking to efficiently exploit L2

5) Blocking for L1: Data is further blocked to exploit L1

6) Intel MKL: Highly optimized implementation

Cache-aware Roofline Model Original Roofline Model

6 is able to achieve near theoretical performance

1 1

moves to the compute bound region

(shift in operational intensity)

2 2
3, 4, 5

6
3, 4, 5

6

optimizations

suggested by the

cache-aware model

55

Cache-aware Roofline Models: Use Cases

7/1/201

4

Applications Systems and Devices Modeling and Load Balancing

What? Where? How?

Application Characterization

Online Monitoring

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted)

* Antão, D., Taniça, L., Ilić, A., Pratas, F., Tomás, P., and Sousa, L., “Monitoring Performance and Power for Application

Characterization with Cache-aware Roofline Model”, PPAM’13

single core quad-core

milc tonto LU factorization

56

Roundup and Conclusions

7/1/201

4

• Node: CPU+GPU platform

57

- Divisible Load Applications

- H.264/AVC Video Encoding

(inter-prediction mode)

• Multi-module Applications

 - FEVES -
Framework for Efficient parallel Video

Encoding on heterogeneous Systems

• Load Balancing P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

• Device: multicore CPUs • General (FP) Applications • Cache-aware Roofline Model

Systems and Devices Modeling and Load Balancing

Where? How?

Applications

What?

- Performance and Total Performance

• Porting and extending load balancing algorithms

– Highly heterogeneous systems (CPU+GPU+FPGA), embedded systems …

– Power- and energy-efficient computing (DVFS)

• Cache-aware Roofline modeling: Future

– Power, energy, efficiency …

– Extending for other device architectures (mainly GPUs)

– Scheduling and load balancing for general applications

• Introduce all these techniques and algorithms in the OS

– Automatic approach: by identifying the characteristics of the applications

– To have support for the different approaches and user provides additional information
• Multiple performance modeling and load balance strategies for different architectures, and solutions for all

applications

On-going and Further Work

7/1/201

4
58

Additional readings

7/1/201

4

– A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the loft”, IEEE Computer Architecture Letters, 2013

– A. Ilic, S. Momcilovic, N. Roma and L. Sousa, “FEVES: Framework for Efficient Parallel Video Encoding on Heterogeneous

Systems”, ICPP’14

– S. Momcilovic, A. Ilic, N. Roma and L. Sousa, “Dynamic load balancing for real-time video encoding on heterogeneous

systems”, IEEE Transactions on Multimedia, 2014

– S. Momcilovic, A. Ilic, N. Roma and L. Sousa, “Collaborative Inter-Prediction on CPU+GPU Systems”, ICIP’14

– D. Antão, L. Taniça, A. Ilic, F. Pratas, P. Tomás and L. Sousa, “Monitoring performance and power for application

characterization with Cache-aware Roofline Model”, PPAM’13

59

7/1/2014

Thank you for your

attention!

Questions?

60

