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• Commodity computers = Heterogeneous systems 
– Multi-core General Purpose Processors (CPUs) 

– Graphics Processing Units (GPUs) 

– Special accelerators, co-processors, FPGAs, mobile and wearable 
systems 

 

• Significant computing power 
– Not yet fully exploited for efficient collaborative computing 

 

• Heterogeneity makes it really difficult! 
– Applications, devices, interconnects, systems…  

– Performance modeling and load balancing for efficient computing 

 

I is variable 2 
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application- and hardware-specific 

hardware-specific 
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• Multi-module Applications 
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• Multi-core CPU (Master) 

– Replication of identical cores 

– Memory hierarchy: private and shared caches 

– Programming: OpenMP, Pthreads, OpenCL 

• GPUs/Accelerators (distant workers) 

– Large number of “simple” cores 

– Complex memory hierarchy: global/local/shared  

– Programming: CUDA, OpenCL 
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Interconnection Buses

CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

• Multi-core CPU (Master) 

– Replication of identical cores 

– Memory hierarchy: private and shared caches 

– Programming: OpenMP, PThreads, OpenCL 

• GPUs/Accelerators (distant workers) 

– Large number of “simple” cores 

– Complex memory hierarchy: global/local/shared  

– Programming: CUDA, OpenCL 

– Configuration: Maxeler data-flow engines 

• Collaborative CPU+GPU execution 

– Architectural diversity and programmability 

– Code parallelization on a per device basis 

– Integration into a single unified environment 

(OpenCL, StarPU, StarSs, CHPS, …) 
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• GPU vs. CPU performance: 

– GPU usually much faster, but not for all problems 

– Performance might differ by orders of magnitude 

 

– Accurate performance modeling is required! 

Full models with MKL/CUBLAS (column-based 1D dgemm) 

1 CPU Core (Intel i7 950) 

GPU_T (NVIDIA GTX285) 

GPU_F (NVIDIA GTX580) 
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CORE 0 CORE 1 CORE 2 CORE 3

GPU 0

GPU 1

GPU 2

• GPU vs. CPU performance: 

– GPU usually much faster, but not for all problems 

– Performance might differ by orders of magnitude 

• GPUs are connected via PCI Express 

– Bidirectional lines 

– Asymmetric bandwidth (in different directions) 

• GPUs are co-processors 

– CPU Core/Thread initiates all data-transfers and 

GPU kernel calls 

– Core is usually completely devoted (underused) 

• GPUs do not benefit from paging 

– Limited global memory! 
GPU 2
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- Divisible Load Applications 

- H.264/AVC Video Encoding         

(inter-prediction mode) 

• Multi-module Applications 



• Discretely Divisible Load (DDL) Applications 

– Computations divisible into pieces of arbitrary sizes (integers) 

– Fractions independently processed in parallel with no precedence constraints 

 

 

• Applicable to a wide range of scientific problems 

– Linear algebra, digital signal and image processing, database applications …  

• State of the art approaches in Heterogeneous Distributed Computing 

– Assume symmetric bandwidth and an one-port model for communication links  

– Limited memory: only input load size is considered; exceeding load simply redistributed 

– Computation/communication time is not always a linear/affine function of the #chunks 

– Single-level load balancing solutions 

 

N 

Divisible Load Processing 
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• Single-Module Applications 

 

 

• Multi-module Applications 

 

 
M2: load balancing, modeling…  M1: load balancing, modeling…  

Divisible Load Processing 

7/1/201

4 

Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

Input 

Data 

K
e
rn

e
l 

CPU 

GPU 

Output 

Data 

Input 

M1 

M
1

 

CPU 

GPU 

M
2

 
CPU 

GPU 

Output 

M2 

repartitioning 

Out/Input 

Data 

15 



• Single-Module Applications 

 

 

• Multi-module Applications 

 

 

 

– Data-dependencies, multiple input/output buffers, shared access to data buffers 
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• H.264/AVC Video Encoding 
 

 

Divisible Load Processing 
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• max. 6% on GPU (8.5% CPU) 

• Dijkstra algorithm 

R* modules 

• min. 94% on GPU (92% CPU) 

• Load balancing and modeling 

ME+INT+SME 

• Adaptive real-time video 

encoding for HD sequences: 

- Multi-module load balancing 

- Simultaneous inter-prediction load 

balancing 

- Communication minimization 

(shared data buffers) 
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- Divisible Load Applications 

- H.264/AVC Video Encoding         
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• Multi-module Applications 
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Heterogeneous Systems”, in ICPP-2014 19 

• FEVES: Unified CPU+GPU encoding framework 

– for collaborative inter-loop video encoding (extendable) 

– organized in several functional blocks 

 Framework control provides the key functionality 

– interacts with other blocks 

 Video Coding Manager orchestrates collaborative execution 

– invokes respective implementations of Parallel Modules 

– automatic Data Access Management between DRAM and local memories 

 Load Balancing with online Performance Characterization 

– provides multi-module workload distributions for collaborative processing 
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* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on 

Heterogeneous Systems”, in ICPP-2014 20 

• Framework Control 
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FEVES: Video Coding Manager 
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* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on 

Heterogeneous Systems”, in ICPP-2014 21 

 Video Coding Manager orchestrates collaborative CPU+GPU video encoding 

– automatically configured according to detected device capabilities (initialization phase), e.g., the amount of supported 

concurrency between computation and communication for GPU devices 

– invokes highly optimized CPU and GPU implementations for the Library of Parallel Modules (SSE/AVX, Fermi/Kepler…) 

– allows automatic Data Access Management between DRAM and local memories 

 

 Collaborative Video Encoding orchestration 

– Module executions and respective data transfers are invoked in a predefined order to ensure correctness of encoding 

– In respect to inherent data-dependencies in H.264/AVC encoding several synchronization points are defined: 

• t1 – reflects the dependency of SME module on the outputs of ME and INT modules 

• t2 – marks the completion of SME module and beginning of R* processing 

• ttot – encoding of a current frame is completed (R* modules executed on single fastest device,  e.g., GPU1) 
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* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on 

Heterogeneous Systems”, in ICPP-2014 22 

 Data Access Management for automatic data transfers and device memory management 

– functionality strictly depends on the decisions from the Load Balancing block (load distributions) 

– simultaneously tracks the state of several input/output buffers: 

• current frame (CF), interpolated sub-frame (SF), motion vectors from ME (MV ME) and SME (MV SME), reference frame (RF) 

– determines on the size of data transfers, their order, and exact position within the respective buffer 

– provides communication minimization when several modules access to the same shared buffer 
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FEVES: Load Balancing 

7/1/201

4 

Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on 

Heterogeneous Systems”, in ICPP-2014 23 

 Load Balancing based on linear 

programming to determine: 

– cross-device load distributions for 

ME, INT and SME modules 

– amount of data transfers across different 

devices for shared buffers 

– communication minimization 

– minimizes total collaborative 

CPU+GPU video encoding time 
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* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on 

Heterogeneous Systems”, in ICPP-2014 24 

 Scalable over both search area (SA) size and the number of reference frames (RF) 

 Highly optimized parallel modules (CPU_H  1.7x faster than CPU_N; GPU_K 2x than GPU_F) 

 Real-time encoding on SysHK: for 64x64 SA size (1 RF) and up to 4 RFs for 32x32 SA 

 Average speedup on SysNFF: 5x vs. CPU_N and 2.2x vs. GPU_F 
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Real-time video encoding for full HD (1080p) video sequences 

Devices Heterogeneous Systems 

CPU_N Intel Nehalem i7 950 SysNF CPU_N + GPU_F 

CPU_H Intel Haswell i7 4770K SysNFF CPU_N + 2xGPU_F 

GPU_F NVIDIA Fermi GTX580 SysHK CPU_H + GPU_K 

GPU_K NVIDIA Kepler GTX780Ti 
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* A. Ilic, S. Momcilovic, N. Roma and L. Sousa., “FEVES: Framework for Efficient Parallel Video Encoding on 

Heterogeneous Systems”, in ICPP-2014 25 

 Real-time encoding for up to 4 RFs for 32x32 SA on SysHK (Intel i7 4770K + NVIDIA 

GTX780Ti) 

 Load Balancing capable of efficiently coping with increasing problem complexity  

 Dynamic Performance Characterization allows adaptation to the current state of the 

platform 

Real-time video encoding for 1080p “Rolling Tomatoes” sequence (first 100 frames) 
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• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)  

 

 

 

• Performance: Computations (flops) and communication (bytes) overlap in 

time 

 

 

 

Original Roofline Model 
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(Ivy Bridge) 

Original Roofline Model* 

(state of the art) 

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)  
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* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)  
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Intel 3770K 

(Ivy Bridge) 

I1=f1/b1 

b 

f 

APP-L3 (data fits in L3) 

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)  
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(Ivy Bridge) 
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b=0 
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APP-L3 (data fits in L3) 

I2=(f1+f2)/b1 

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)  
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I is variable 

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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Ii=(Σfi)/b1 

I is variable 

* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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(Ivy Bridge) 
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I is variable 
I varies with the problem 

size. Memory bound 

becomes compute bound. 

Fixed I - unexpected 
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different $ levels 

Does not achieve 

maximum attainable 
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* Williams, S., Waterman, A. and Patterson, D., “Roofline: An insightful visual performance model for multicore architectures”, 

Communications of the ACM (2009) 
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• Multi-cores: Powerful cores and memory hierarchy (caches and DRAM)  

 

 

 

• Performance: Computations (flops) and communication (bytes) overlap in 

time 

 

 

 

Cache-aware Roofline Model 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

filling the 

pipeline 
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Cache-aware Roofline Model 
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What? Where? How? 

Memory bandwidth variation Performance variation 
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What? Where? How? 

Memory bandwidth Performance variation 
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Cache-aware Roofline Model 
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Memory bandwidth Performance variation 
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Cache-aware Roofline Model 
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Memory bandwidth Performance variation 
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Cache-aware Roofline Model 
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What? Where? How? 
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• Insightful single plot model 
- Shows performance limits of multicores 

- Redefined OI: flops and bytes as seen by core 

- Constructed once per architecture 

 

 

• Considers complete memory hierarchy 
- Influence of caches and DRAM to performance 

 

 

• Applicable to other types of operations  
- not only floating-point 

 

 

• Useful for: 
- Application characterization and optimization  

- Architecture development and understanding 

Cache-aware Roofline Model 
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What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

Cache-aware Roofline Model* 

[proposed] 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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• Insightful single plot model 
- Shows performance limits of multicores 

- Redefined OI: flops and bytes as seen by core 

- Constructed once per architecture 

 

 

• Considers complete memory hierarchy 
- Influence of caches and DRAM to performance 

 

 

• Applicable to other types of operations  
- not only floating-point 

 

 

• Useful for: 
- Application characterization and optimization  

- Architecture development and understanding 

Cache-aware Roofline Model 
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What? Where? How? 

• Total Cache-aware Roofline Model 
 

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline) 

- Single-plot modeling for different types of 

compute and memory operations 

 

 

Intel 3770K 

(Ivy Bridge) 

4 Cores 

(AVX MAD) 
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• Insightful single plot model 
- Shows performance limits of multicores 

- Redefined OI: flops and bytes as seen by core 

- Constructed once per architecture 

 

 

• Considers complete memory hierarchy 
- Influence of caches and DRAM to performance 

 

 

• Applicable to other types of operations  
- not only floating-point 

 

 

• Useful for: 
- Application characterization and optimization  

- Architecture development and understanding 

Cache-aware Roofline Model 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

• Total Cache-aware Roofline Model 
 

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline) 

- Single-plot modeling for different types of 

compute and memory operations 

 

 

Intel 3770K 

(Ivy Bridge) 

4 Cores 

(AVX ADD/MUL) 
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• Insightful single plot model 
- Shows performance limits of multicores 

- Redefined OI: flops and bytes as seen by core 

- Constructed once per architecture 

 

 

• Considers complete memory hierarchy 
- Influence of caches and DRAM to performance 

 

 

• Applicable to other types of operations  
- not only floating-point 

 

 

• Useful for: 
- Application characterization and optimization  

- Architecture development and understanding 

Cache-aware Roofline Model 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

• Total Cache-aware Roofline Model 
 

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline) 

- Single-plot modeling for different types of 

compute and memory operations 

 

 

4 Cores 

(SSE) 
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• Insightful single plot model 
- Shows performance limits of multicores 

- Redefined OI: flops and bytes as seen by core 

- Constructed once per architecture 

 

 

• Considers complete memory hierarchy 
- Influence of caches and DRAM to performance 

 

 

• Applicable to other types of operations  
- not only floating-point 

 

 

• Useful for: 
- Application characterization and optimization  

- Architecture development and understanding 

Cache-aware Roofline Model 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

• Total Cache-aware Roofline Model 
 

- Includes all transitional states (traversing the 

memory hierarchy and filling the pipeline) 

- Single-plot modeling for different types of 

compute and memory operations 

 

 

4 Cores 

(DBL) 
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Cache-aware Roofline Model: Hands On 
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What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

I is constant 

I=(Σfι)/(Σbι) 

f b 

APP-D (data traffic from DRAM) 
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* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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Cache-aware Roofline Model: Hands On 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

I is constant 

I=(Σfι)/(Σbι) 

f b 

APP-L3 (fits in L3) 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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Cache-aware Roofline Model: Hands On 
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What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

I is constant 

I=(Σfι)/(Σbι) 

f b 

APP-L3 (fits in L3) 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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Cache-aware Roofline Model: Hands On 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

I is constant 

I=(Σfι)/(Σbι) 

f b 

APP-L3 (fits in L3) 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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Cache-aware Roofline Model: Hands On 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

I is constant 

I=(Σfι)/(Σbι) 

f b 

APP-L1 (fits in L1) 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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Cache-aware Roofline Model: Hands On 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

Intel 3770K 

(Ivy Bridge) 

I is constant 

I=(Σfι)/(Σbι) 

f b 

APP-L1 (fits in L1) 

Achieves maximum 

attainable performance is 

always memory bound. 

‘I’ does not vary. The 

performance tends to the 

cache level ceiling. 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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Practical Example: Dense Matrix Multiplication 
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Applications Systems and Devices Modeling and Load Balancing 

What? Where? How? 

1) Basic implementation:  All matrices stored in row-major order. 
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Cache-aware Roofline Model Original Roofline Model 

application is in the compute bound region 

mainly limited by DRAM 

can be optimized to hit higher cache levels 

1 1 

application is in the memory bound region 

mainly limited by DRAM 

can be optimized up to the slanted part of the 

model 
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Practical Example: Dense Matrix Multiplication 
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What? Where? How? 
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1) Basic implementation:  All matrices stored in row-major order. 

Cache-aware Roofline Model Original Roofline Model 

application is in the compute bound region 

almost hits L3 

can be further optimized to hit higher cache levels 

1 1 

application is in the memory bound region 

performance hits the roof of the model 

the model suggests that the optimization 

process is finished 

2) Transposition: One matrix is transposed into column-major 

2 2 
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Practical Example: Dense Matrix Multiplication 
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What? Where? How? 
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1) Basic implementation:  All matrices stored in row-major order 

2) Transposition: One matrix is transposed into column-major 

3) Blocking for L3: All matrices are blocked to efficiently exploit L3 

4) Blocking for L2: Second level of blocking to efficiently exploit L2 

5) Blocking for L1: Data is further blocked to exploit L1 

 

Cache-aware Roofline Model Original Roofline Model 

performance is further improved breaking the cache 

level ceilings towards the roof 

1 1 

optimization process finished 

2 2 
3, 4, 5 
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Practical Example: Dense Matrix Multiplication 
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What? Where? How? 

* Ilic, A., Pratas, F. and Sousa, L., “Cache-aware Roofline Model: Upgrading the Loft”, IEEE Computer Architecture Letters, 2013 
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1) Basic implementation:  All matrices stored in row-major order 

2) Transposition: One matrix is transposed into column-major 

3) Blocking for L3: All matrices are blocked to efficiently exploit L3 

4) Blocking for L2: Second level of blocking to efficiently exploit L2 

5) Blocking for L1: Data is further blocked to exploit L1 

6) Intel MKL: Highly optimized implementation 

 
Cache-aware Roofline Model Original Roofline Model 

6 is able to achieve near theoretical performance 

1 1 

moves to the compute bound region 

(shift in operational intensity)  

2 2 
3, 4, 5 

6 
3, 4, 5 

6 

optimizations 

suggested by the 

cache-aware model 
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Cache-aware Roofline Models: Use Cases 
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What? Where? How? 

Application Characterization 

Online Monitoring 

* Ilić, A., Pratas, F. and Sousa, L., “Beyond the Roofline: Power, Energy and Efficiency Modeling for Multicores” (submitted) 

* Antão, D., Taniça, L., Ilić, A., Pratas, F., Tomás, P., and Sousa, L., “Monitoring Performance and Power for Application 

Characterization with Cache-aware Roofline Model”, PPAM’13 

single core quad-core 

milc tonto LU factorization 
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Roundup and Conclusions 
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• Node: CPU+GPU platform 
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- Divisible Load Applications 

- H.264/AVC Video Encoding         

(inter-prediction mode) 

• Multi-module Applications 

           - FEVES - 
Framework for Efficient parallel Video 

Encoding on heterogeneous Systems  

• Load Balancing P
e

rfo
rm

a
n

c
e

 m
o

d
e

lin
g

 

• Device: multicore CPUs • General (FP) Applications • Cache-aware Roofline Model 

Systems and Devices Modeling and Load Balancing 

Where? How? 

Applications 

What? 

- Performance and Total Performance 



• Porting and extending load balancing algorithms 

– Highly heterogeneous systems (CPU+GPU+FPGA), embedded systems … 

– Power- and energy-efficient computing (DVFS) 

 

• Cache-aware Roofline modeling: Future 

– Power, energy, efficiency …  

– Extending for other device architectures (mainly GPUs) 

– Scheduling and load balancing for general applications 

 

• Introduce all these techniques and algorithms in the OS 

– Automatic approach: by identifying the characteristics of the applications 

– To have support for the different approaches and user provides additional information 
• Multiple performance modeling  and load balance  strategies for different architectures, and solutions for all 

applications   

 

On-going and Further Work 
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– A. Ilic, F. Pratas and L. Sousa, “Cache-aware Roofline Model: Upgrading the loft”, IEEE Computer Architecture Letters, 2013 

 

– A. Ilic, S. Momcilovic, N. Roma and L. Sousa, “FEVES: Framework for Efficient Parallel Video Encoding on Heterogeneous 

Systems”, ICPP’14 

 

– S. Momcilovic, A. Ilic, N. Roma and L. Sousa, “Dynamic load balancing for real-time video encoding on heterogeneous 

systems”, IEEE Transactions on Multimedia, 2014 

 

– S. Momcilovic, A. Ilic, N. Roma and L. Sousa, “Collaborative Inter-Prediction on CPU+GPU Systems”, ICIP’14 

 

– D. Antão, L. Taniça, A. Ilic, F. Pratas, P. Tomás and L. Sousa, “Monitoring performance and power for application 

characterization with Cache-aware Roofline Model”, PPAM’13 
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